
Coding Guidelines and Code Generation
John Aynsley · Doulos · john.aynsley@doulos.com / Dr. Christoph Sühnel · Doulos · christoph.suehnel@doulos.com

Abstract
Easier UVM consists of a comprehensive
set of coding guidelines for the use of
UVM and an open-source UVM code
generation tool that automatically
generates the boilerplate UVM code for
a project according to these guidelines.

Easier UVM helps individuals and teams
get started with UVM, helps avoid
pitfalls, helps promote best practice, and
helps ensure consistency and uniformity
across projects.

Easier UVM helps teams to become
productive with UVM more quickly,
and reduces the burden of maintaining
a UVM codebase over time. Both the
guidelines and the tool can be taken
as they are or can be used as a starting
point and modified according to the
demands of a specific project.

Motivation

• SystemVerilog is large and complex

• Differences between simulators

• UVM is large and complex

• There’s More Than One Way To Do It!

• New users don’t know where to start

Benefits

• Helps getting started

• Learn best practice and avoid
common pitfalls

• Become productive more quickly

• Be uniform and consistent across
projects

• Reduces support costs over time

For each DUT interface, you specify

 • Agent name

 uvc_Name| spi

 • Sequence item name and list of variables

 uvc_item | spi_seq_item
 uvc_var | rand logic [127:0] data;
 uvc_var | rand bit [6:0] no_bits;
 uvc_var | rand bit RX_NEG;

 • Interface name and list of clocks, resets & variables

 uvc_if | spi_if
 uvc_port | logic clk;
 uvc_port | logic reset;
 uvc_port | logic sclk_pad_o;

 ...

General Guidelines Code Generation – INPUT

Code Generation – OUTPUT

Example

Practical
Experience

Coding Guidelines Coding Patterns

Visit Doulos at Booth 801

• Tests

• Reuse

• The factory and the configuration
database

• Transaction-level ports and exports

• Virtual interfaces

• Run-time phases

• Virtual sequences and scoreboards

• Message ID and verbosity

• Register layer

• Functional coverage

• Structuring files

• Lexical Guidelines and Naming
Conventions

• General Guidelines

• General Code Structure

• Clocks, timing and synchronization

• Transactions

• Sequences

• Objections

• Components

• Connection to the DUT

• TLM Connections

• Configurations

• The Factory

• Tests

• Messaging

• Functional Coverage

• The Register Layer

• Agent Data Structure and Packaging

task spi_driver::run_phase(uvm_phase phase);

 // add additional declarations here

 super.run_phase(phase);
 `uvm_info(get_type_name(),”run_phase”,UVM_MEDIUM)

 // set signals on reset values here

 @(posedge vif.reset) // reset goes inactive
 forever begin
 seq_item_port.get_next_item(req);
 @(posedge vif.clk)
 `uvm_info(get_type_name(),
 {“req item\n”,req.sprint}, UVM_MEDIUM)

 // insert the driver protocol here

 $cast(rsp, req.clone());
 // adopt the rsp
 seq_item_port.item_done();
 end
endtask : run_phase

1. Kick-off meeting

2. Create setup files

3. Generate code for
complete environment

4. Simulate complete
environment

5. Implement drivers
one-by-one

6. Simulate each driver by
adding new sequences
and tests

7. Implement monitors,
subscribers, and
scoreboards

8. Add further data
members and refine
methods

www.doulos.com

Introduction

Env

Env (reused from block level) Env (layered agents)

Agent

AgentAgentAgent

Interface Interface Interface

DUT

Sequ’r

Subscriber Scoreboard

Scoreboard

Virual sequence

Virual sequence

Monitor Driver

Sequ’r

DriverMonitor Monitor Driver

Sequ’r

Monitor Driver

Sequ’r

Coding Guidelines Code Generation

Helps reinforce
formal training

Mostly
common sense

More prescriptive
than UVM docs

Boilerplate
code

Placeholders

Examples

class my_comp extends uvm_component;
 `uvm_component_utils(my_comp)

 function new(string name, uvm_component parent);
 super.new(name, parent);
 endfunction

 function void build_phase(...);
 ...
endclass

Pattern 1

class my_tx extends uvm_sequence_item;
 `uvm_object_utils(my_tx)

 function new (string name = “”);
 super.new(name);
 endfunction

 function string convert2string;
 ...
endclass

Pattern 2a

class my_seq extends uvm_sequence #(my_tx);
 `uvm_object_utils(my_seq)

 function new(string name = “”);
 super.new(name);
 endfunction
 ...
 task body;
 ...
endclass

Pattern 2b

