
VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 1

VMM 1.2 – SPI Tutorial

Doug Smith, Doulos, February 2010

Introduction

In this tutorial, a simple Serial Peripheral Interface (SPI) design is used from OpenCores.org

(http://www.opencores.org/project,spi). The object is to take you step-by-step through implementing a

simple VMM verification environment and showcasing some of the new features of VMM 1.2. This

tutorial will use a bottom-up approach in creating a verification testbench.

Getting Started

First, you need a working copy of Synopsys’ VMM 1.2 library. VMM can be freely downloaded from

www.vmmcentral.org. Download and follow the installation directions found in the included

README.txt. If you are using a non-VCS simulator, then you will need to compile the additional regular

expression string matching library included with the VMM distribution. See your simulator’s

documentation for linking in DPI code into your simulations.

Next, go to OpenCores.org and download the free SPI design. This design uses a Wishbone system

interface to configure and control the SPI. If you are not familiar with the Wishbone or SPI protocols,

then have a look at the included SPI documentation (also found here) and at the Wishbone specification

found on OpenCores here.

You will also need to download the source code for this tutorial from the same location as this PDF file

on www.doulos.com.

Interfacing with the design

The easiest way for our testbench to interact with the design under test is using a SystemVerilog

interface. Our interface will have all of the Wishbone and SPI protocol signals and a modport for each

protocol:

interface dut_intf;

 // Wishbone signals

 logic wb_clk_i; // master clock input

 logic wb_rst_i; // sync active high reset

 logic [4:0] wb_adr_i; // lower address bits

 logic [31:0] wb_dat_i; // databus input

 logic [31:0] wb_dat_o; // databus output

 logic [3:0] wb_sel_i; // byte select inputs

 logic wb_we_i; // write enable input

http://www.opencores.org/project,spi
http://www.vmmcentral.org/
http://www.opencores.org/websvn,filedetails?repname=spi&path=%2Fspi%2Ftrunk%2Fdoc%2Fspi.pdf
http://www.opencores.org/downloads/wbspec_b3.pdf

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 2

 logic wb_stb_i; // stobe/core select signal

 logic wb_cyc_i; // valid bus cycle input

 logic wb_ack_o; // bus cycle ack output

 logic wb_err_o; // termination w/ error

 logic wb_int_o; // int req signal output

 // SPI signals

 logic [7:0] ss_pad_o; // slave select

 logic sclk_pad_o; // serial clock

 logic mosi_pad_o; // master out slave in

 logic miso_pad_i; // master in slave out

 // Wishbone signals

 modport wb (output wb_clk_i, wb_rst_i, wb_adr_i, wb_dat_i,

 wb_sel_i, wb_we_i, wb_stb_i, wb_cyc_i,

 input wb_dat_o, wb_ack_o, wb_err_o, wb_int_o);

 // SPI signals

 modport spi (output miso_pad_i, input ss_pad_o, sclk_pad_o, mosi_pad_o);

endinterface

Since our SPI design is written in traditional Verilog, we need to create a wrapper around it to connect

the signals of the design with our interface:

module spi_wrapper (interface dut_if);

 // Instantiate and connect up the DUT

 spi_top spi (// Wishbone interface

 .wb_clk_i (dut_if.wb_clk_i),

 .wb_rst_i (dut_if.wb_rst_i),

 .wb_adr_i (dut_if.wb_adr_i),

 .wb_dat_i (dut_if.wb_dat_i),

 .wb_dat_o (dut_if.wb_dat_o),

 .wb_sel_i (dut_if.wb_sel_i),

 .wb_we_i (dut_if.wb_we_i),

 .wb_stb_i (dut_if.wb_stb_i),

 .wb_cyc_i (dut_if.wb_cyc_i),

 .wb_ack_o (dut_if.wb_ack_o),

 .wb_err_o (dut_if.wb_err_o),

 .wb_int_o (dut_if.wb_int_o),

 // SPI signals

 .ss_pad_o (dut_if.ss_pad_o),

 .sclk_pad_o(dut_if.sclk_pad_o),

 .mosi_pad_o(dut_if.mosi_pad_o),

 .miso_pad_i(dut_if.miso_pad_i)

);

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 3

endmodule

With our interfacing to the design complete, we can now start creating our VMM 1.2 class-based

testbench in a bottom-up manner.

The transaction object

All communication between testbench components is made using transaction objects. Transaction

objects in VMM are built by extending the vmm_data class. We will start by creating a transaction

object for the Wishbone interface with the following members:

Address Address of transaction

Data Data payload

Kind Specifies the data kind of the transaction (RX or TX)

VMM can automatically create convenience methods for our transaction object like copy(), print(),
compare(), etc. This is accomplished by using the VMM shorthand data member macros to define all
the members in the transaction object.

Our transaction can also include a class factory macro that will allow us to swap out derived classes from
our testcases later using the class factory mechanism. For this to work, we will need to define a class
constructor, copy(), and allocate() methods, but these are provided automatically for us when using the
shorthand data member macros. The transaction object can be written as follows:

class wb_spi_trans extends vmm_data;

 // Fields in the SPI registers

 rand bit [AWIDTH-1:0] addr;

 rand bit [DWIDTH-1:0] data;

 rand trans_t kind;

 `vmm_typename(wb_spi_trans)

 // Create the constructor, copy(), and allocate() functions

 `vmm_data_member_begin(wb_spi_trans)

 `vmm_data_member_scalar(addr, DO_ALL)

 `vmm_data_member_scalar(data, DO_ALL)

 `vmm_data_member_enum (kind, DO_ALL)

 `vmm_data_member_end(wb_spi_trans)

 // Class factory so this transaction can be swapped with derived classes.

 `vmm_class_factory(wb_spi_trans)

endclass : wb_spi_trans

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 4

VMM can also create a parameterized channel class for us automatically by using the vmm_channel()

macro so we will include that along with our transaction definition:

// Create a channel class for the wb_spi_trans called “wb_spi_trans_channel”

`vmm_channel (wb_spi_trans)

For our Wishbone and SPI monitors, we will create a slightly different transaction. The SPI design can

transfer up to 128 bits, but there is no way of knowing on the SPI interface how many bits need to be

transferred so our Wishbone monitor will store each 32 bit data write to the SPI design’s registers and

then send the 128 bit data and the control register’s character length (CHAR_LEN) to the scoreboard for

checking with the SPI output. Also, this transaction will include coverage terms so we can see what

random stimulus has been generated. Our monitor and scoreboard transaction will have the same

members as above with the additional control register member:

class mon_sb_trans extends vmm_data;

 // Fields in the SPI registers

 rand bit [AWIDTH-1:0] addr;

 rand bit [(DWIDTH*4)-1:0] data;

 rand trans_t kind;

 rand ctrl_t ctrl;

 `vmm_typename(mon_sb_trans)

 // Define function coverage

 covergroup cg;

 coverpoint addr {

 bins valid[] = { SPI_TX_RX0, SPI_TX_RX1, SPI_TX_RX2,

 SPI_TX_RX3, SPI_CTRL, SPI_DIVIDER, SPI_SS };

 illegal_bins invalid = default;

 }

 char_len: coverpoint ctrl.char_len {

 bins tiny = { [1:43] };

 bins mid = { [44:85] };

 bins big = { 0, [86:127] };

 }

 coverpoint kind;

 endgroup

 `vmm_data_new(mon_sb_trans)

 function new();

 super.new(log);

 cg = new; // Create the coverage

 endfunction

 // Function to sample the coverage

 function void sample_cov();

 cg.sample();

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 5

 endfunction

 // Create the constructor, copy(), and allocate() functions

 `vmm_data_member_begin(mon_sb_trans)

 `vmm_data_member_scalar(addr, DO_ALL)

 `vmm_data_member_scalar(data, DO_ALL)

 `vmm_data_member_scalar(ctrl, DO_ALL)

 `vmm_data_member_enum (kind, DO_ALL)

 `vmm_data_member_end(mon_sb_trans)

endclass : mon_sb_trans

Observe, the data width in this transaction is 4 times larger than the wb_spi_trans, and we have

included the control register member ctrl. We have also included a constructor so we can instantiate

the covergroup. By default, the `vmm_data_member_begin/end macros create an automatic

constructor so we use the `vmm_data_new macro to prevent its creation and define our own. For

convenience, we have also defined a function called sample_cov() so we can easily indicate when to

sample the coverage.

Creating the testbench

In order to simplify the testbench for this tutorial, we will focus primarily on the read and write

transactions through the Wishbone interface of our design and checking that the SPI interface correctly

responds. All SystemVerilog testbenches require a module to instantiate the design so we need a top-

level module that instantiates the interface (called dut_intf), the design wrapper (dut_wrapper), and the

design itself. We will call this top-level testbench wb_spi_tb.

The class-based portion of the testbench will be constructed using VMM. Each test in VMM is derived

from vmm_test and instantiates the environment that it wishes to execute on. The testbench

environment is derived from vmm_env and instantiates the appropriate testbench components. For the

Wishbone interface, we will create a self-contained verification unit called a sub-environment, which

derives from vmm_subenv. Inside this sub-environment, we have a scenario generator that creates the

stimulus, a driver to drive it, and a monitor to monitor the transactions and pass them over to the

scoreboard. Since the environment is simplified for this tutorial, only a monitor will be needed to

monitor and send the SPI output to the scoreboard. In order to create the VMM environment and start

the test case, we will use a program block and call it wb_spi_top. This environment is illustrated below:

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 6

The Wishbone sub-environment

Wishbone driver

We’ll start creating the Wishbone sub-environment by creating the driver. The driver receives

transactions from a scenario generator through a VMM channel, and then converts the transaction into

Wishbone read/write operations. With the new VMM 1.2 implicit phasing, we can simplify our

component development by defining the driver’s functionality across the different implicit phase

methods.

The driver’s interaction with the design happens through a virtual interface passed into the driver during

the implicit connect_ph phase. The interface is placed in a class wrapper so that it can be easily passed

to the driver using the VMM 1.2 configuration mechanism via the vmm_opts::get_object_obj() method.

This allows us to swap out the interface later to inject errors, change the signal routing, or perform other

functionality. In the start_of_sim_ph() phase, we’ll check that the virtual interface is correctly

connected before we start using it (this avoids a fatal error from a null pointer access).

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 7

class wb_driver extends vmm_xactor;

 virtual dut_intf.wb dut_if; // Virtual interface

 wb_spi_trans_channel in_chan;

 `vmm_typename(wb_driver)

 // Constructor

 function new (string name, string inst, vmm_group parent);

 super.new(name, inst,, parent);

 endfunction : new

 // Connect phase

 function void connect_ph();

 bit is_set;

 dut_if_wrapper if_wrp;

 // Grab the interface wrapper for the virtual interface

 if ($cast(if_wrp, vmm_opts::get_object_obj(is_set,

 this, "dut_intf"))) begin

 if (if_wrp != null)

 this.dut_if = if_wrp.dut_if;

 else

 `vmm_fatal(log, "Cannot find DUT interface!!");

 end

 endfunction : connect_ph

 // Start of simulation phase

 function void start_of_sim_ph();

 if (dut_if == null)

 `vmm_fatal(log, "Virtual interface not connected!");

 endfunction

 ...

endclass

Next, we need to define the core functionality of the driver. If our driver was derived from the new

vmm_group class, then we could define the functionality in the run_ph() method; however, we’re going

to use the recommended vmm_xactor class since it fits into the traditional VMM methodology and

works well with the new features of VMM 1.2. The body of a vmm_xactor is placed inside of a main()

method and forked off with the parent class’ main() method:

// main() task - do the work here

task main;

 fork

 super.main();

 begin : main_fork

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 8

 `vmm_note(log, "Starting the WB driver ...");

 forever begin : drive_bus

 // Main functionality of the driver – drive the bus

 ...

 end : drive_bus

 end : main_fork

 join_none

endtask : main

Once the functionality is defined, then our driver is completed and ready to plug into the environment

(see downloadable source code for the full Wishbone driver implementation).

Wishbone monitor

The Wishbone monitor looks identical in structure to the driver, except for some additional TLM analysis

ports that will send monitor transactions to the scoreboard. Likewise, we will include some coverage

terms in our monitor (though these could be placed in a separate coverage collector or in the

scoreboard). Because we included an analysis port and covergroup, we will need to create these

objects either in the monitor’s constructor or implicit build_ph phase:

class wb_monitor extends vmm_xactor;

 // Interface to the WB DUT interface

 virtual dut_intf.wb dut_if;

 // Communication port

 vmm_tlm_analysis_port #(wb_monitor, mon_sb_trans) sb_ap;

 mon_sb_trans trans = new;

 // Constructor

 function new (string name, string inst, vmm_group parent);

 super.new(name, inst,, parent);

 endfunction : new

 // Build phase

 function void build_ph();

 super.build_ph();

 `vmm_note(this.log, "Building analysis port...");

 sb_ap = new (this, "Analysis port to scoreboard");

 endfunction : build_ph

 // Connect phase

 function void connect_ph();

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 9

 bit is_set;

 dut_if_wrapper if_wrp;

 // Grab the interface wrapper for the virtual interface

 if ($cast(if_wrp, vmm_opts::get_object_obj(is_set,

 this, "dut_intf"))) begin

 if (if_wrp != null)

 this.dut_if = if_wrp.dut_if;

 else

 `vmm_fatal(log, "Cannot find DUT interface!!");

 end

 endfunction : connect_ph

 // Start of simulation phase

 function void start_of_sim_ph();

 if (dut_if == null)

 `vmm_fatal(log, "Virtual interface not connected!");

 endfunction

 // main() body

 task main;

 fork

 super.main();

 begin : main_fork

 // Debug info

 `vmm_note(this.log, "Monitoring the WB bus");

 // Monitor the bus

 forever begin : monitor_bus

 // Main monitor functionality – read the bus

 ...

 trans.sample_cov(); // Sample the coverage

 ...

 sb_ap.write(trans); // Send transaction to scoreboard

 end : monitor_bus

 end : main_fork

 join_none

 endtask : main

endclass : wb_monitor

Notice that an analysis port is declared by specifying the initiator and transaction type as its parameter:

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 10

vmm_tlm_analysis_port #(wb_monitor, mon_sb_trans) sb_ap;

Later in the scoreboard, we will define an analysis export that will implement the write() method used to

send the data and check it in the scoreboard. (See the downloadable source code for the monitor’s full

implementation).

Wishbone scenario generator

The scenario generator generates transactions by running user-defined scenarios and then passing them

on to the driver. While writing the scenarios themselves requires a bit of work, creating the scenario

generator could not be easier. The scenario generator is created using one line of code:

`vmm_scenario_gen(wb_spi_trans, "WB/SPI Scenarios")

That’s it!! Nothing more complicated is required. Now, a scenario generator class called

wb_spi_trans_scenario_gen is defined and we can use it in our Wishbone sub-environment.

Creating a sub-environment

With the scenario generator, driver, and monitor defined, we can start constructing our verification unit

referred to as a VMM sub-environment. In the traditional VMM methodology, we would normally

create our sub-environment by extending vmm_subenv, but so we can take advantage of the new VMM

1.2 implicit phasing, we will use a vmm_group.

Practically speaking, a sub-environment just creates a wrapper around our testbench components so we

can form a self-contained verification unit. Its main purpose is to instantiate its components and

connect them together. We will also use the new VMM 1.2 configuration mechanism to set the number

of scenarios to generate by using the vmm_unit_config_begin/end macros. Using these macros, the

testcase can pass a value into the sub-environment or we can set a default value if nothing is set. Taking

a look at our testbench diagram, you will notice that a channel is used to connect the scenario generator

and driver, which our sub-environment will connect for us. Since the scenario generator executes

independently of the VMM 1.2 implicit phasing, we will start it in the start_of_sim_ph phase and stop it

in the shutdown_ph phase.

We also need a way to end our testcase, but not before all the components are finished and inactive.

This can be accomplished by using VMM’s consensus mechanism. The consensus mechanism uses a

simple voting system where components either consent or object to ending the test. Each component

registers its vote with the consensus object, and its objecting vote prevents simulation from finishing.

Within the voting components, a VMM notification object can be used to indicate if a component is idle

or busy. The register_xactor() method forks a process to wait for these notifications and update the

component’s consensus vote. We will register each of these components in the sub-environment’s

connect_ph phase with the vmm_group’s vote consensus member, which is used by the run_ph phase to

wait for all the components to be idle before finishing simulation.

Here is the complete source of our Wishbone sub-environment:

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 11

class wb_subenv extends vmm_group;

 wb_monitor wb_mon;

 wb_driver wb_drv;

 wb_spi_trans_scenario_gen scn_gen;

 wb_spi_trans_channel gen_to_drv_chan;

 int num_scenarios;

 `vmm_typename(wb_subenv)

 // Configuration mechanism for controlling the number of scenarios

 `vmm_unit_config_begin(wb_subenv)

 `vmm_unit_config_rand_int(num_scenarios, 5, "Number of scenarios to

run", 0, "DO_ALL")

 `vmm_unit_config_end(wb_subenv)

 // Constructor

 function new (string name, string inst, vmm_group parent);

 super.new ("wb_subenv", inst, parent);

 endfunction : new

 // Build phase

 function void build_ph();

 super.build_ph();

 `vmm_note(this.log, "Creating subenvironment ...");

 gen_to_drv_chan = new("gen_to_drv_chan", " Channel");

 wb_drv = new("wb_driver", "wb_drv", this);

 wb_mon = new("wb_monitor", "wb_mon", this);

 scn_gen = new("scn_gen", 0);

 endfunction : build_ph

 // Connect phase

 function void connect_ph();

 // Connect up the channel between the generator and the driver

 wb_drv.in_chan = gen_to_drv_chan;

 scn_gen.out_chan = gen_to_drv_chan;

 // Register end-of-test consensus

 vote.register_xactor(wb_drv);

 vote.register_xactor(wb_mon);

 vote.register_xactor(scn_gen);

 vote.register_channel(gen_to_drv_chan);

 endfunction : connect_ph

 // Start the stimulus generator phase

 function void start_of_sim_ph();

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 12

 super.start_of_sim_ph();

 // Use configuration value to set the number of scenarios

 scn_gen.stop_after_n_scenarios = num_scenarios;

 scn_gen.start_xactor(); // Start the scenario generator

 // (Note, the testcase sets the

 // scenario to run).

 endfunction

 // Shutdown phase

 task shutdown_ph();

 scn_gen.notify.wait_for(wb_spi_trans_scenario_gen::DONE);

 `vmm_note(this.log, "Scenario generation done...");

 // Stop the scenario generator

 scn_gen.stop_xactor();

 endtask

endclass : wb_subenv

The SPI monitor and scoreboard

The remaining components needed to finish our testbench are a monitor for the SPI bus and a

scoreboard checker. The structure of our SPI monitor is just like our Wishbone monitor. We include an

analysis port to pass transactions over to the scoreboard and we provide the main functionality in the

main() task. Since the SPI protocol is so simple, here is the full implementation of our SPI monitor:

class spi_monitor extends vmm_xactor;

 // Interface to the SPI DUT interface

 virtual dut_intf.spi dut_if;

 // Communication ports

 vmm_tlm_analysis_port #(spi_monitor, mon_sb_trans) sb_ap;

 // Constructor

 function new (string name, string inst, vmm_group parent);

 super.new(name, inst,, parent);

 endfunction : new

 // Build phase

 function void build_ph();

 super.build_ph();

 sb_ap = new (this, "Analysis port to scoreboard");

 endfunction : build_ph

 // Connect phase

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 13

 function void connect_ph();

 bit is_set;

 dut_if_wrapper if_wrp;

 // Grab the interface wrapper for the virtual interface

 if ($cast(if_wrp, vmm_opts::get_object_obj(is_set,

 this, "dut_intf"))) begin

 if (if_wrp != null)

 this.dut_if = if_wrp.dut_if;

 else

 `vmm_fatal(log, "Cannot find DUT interface!!");

 end

 endfunction : connect_ph

 // Start of simulation phase

 function void start_of_sim_ph();

 if (dut_if == null)

 `vmm_fatal(log, "Virtual interface not connected!");

 endfunction

 // main() body

 task main();

 fork

 super.main();

 begin : main_fork

 `vmm_note(this.log, "Monitoring the SPI bus ...");

 forever begin

 bit [6:0] i = 0;

 mon_sb_trans trans = new; // New transaction

 wait (~dut_if.ss_pad_o); // Wait for a tx to begin

 this.notify.reset(XACTOR_IDLE);

 this.notify.indicate(XACTOR_BUSY); // Don't end yet!

 trans = new; // New transaction

 `vmm_note(this.log, "SPI bus ready to transmit...");

 fork

 begin

 for (i = 0; ~dut_if.ss_pad_o[0]; i++) begin

 @(posedge dut_if.sclk_pad_o);

 trans.data[i] = dut_if.mosi_pad_o;

 end

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 14

 end

 wait (dut_if.ss_pad_o[0]); // Transfer finished

 join_any

 disable fork;

 //

 // Send the transaction to the scoreboard.

 //

 if (i) begin // Make sure something was transferred

 `vmm_note(this.log, "Sending transaction to scoreboard..."

);

 trans.display();

 sb_ap.write(trans);

 end

 this.notify.reset(XACTOR_BUSY);

 this.notify.indicate(XACTOR_IDLE); // Ok, not busy

 end

 end : main_fork

 join_none

 endtask : main

endclass : spi_monitor

For our scoreboard, we simply need to extend the VMM data-stream vmm_sb_ds class, which has all the

functionality needed for checking. In order for it to work with our custom transaction type, we need to

define a compare() function, and create the implementation for our TLM analysis exports that receive

the actual (“inp”) and expected (“exp”) data. Here is what our scoreboard will look like:

`include "vmm_sb.sv"

typedef vmm_sb_ds_typed#(mon_sb_trans) sb_t;

class wb_spi_scoreboard extends sb_t;

 `vmm_tlm_analysis_export(_inp)

 `vmm_tlm_analysis_export(_exp)

 vmm_tlm_analysis_export_inp#(wb_spi_scoreboard, mon_sb_trans)

inp_ap = new(this, "input analysis port");

 vmm_tlm_analysis_export_exp#(wb_spi_scoreboard, mon_sb_trans)

exp_ap = new(this, "expect analysis port");

 function new(string name);

 super.new(name);

 endfunction

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 15

 function bit compare(mon_sb_trans actual, mon_sb_trans expected);

 bit [127:0] mask = '0;

 // Create a mask based on the number of bits transmitted

 for (int i = 0; i < (expected.ctrl & 'h3f); i++)

 mask[i] = 1;

 // Only need to compare the data

 return ((actual.data & mask) == (expected.data & mask));

 endfunction

 // Provide an implementation for the TLM analysis ports

 function void write_inp(int id=-1, mon_sb_trans trans);

 // Actual value so check to see if it's correct

 void'(this.expect_in_order(trans, id));

 endfunction

 function void write_exp(int id=-1, mon_sb_trans trans);

 // Expect this transaction

 this.exp_insert(trans, id);

 endfunction

endclass : wb_spi_scoreboard

Since the scoreboard classes are not found in the standard VMM source files, vmm_sb.sv must be

included. Prior to VMM 1.2, vmm_sb_ds was not parmeterized, but now we can create a specialized

scoreboard that automatically handles our transaction without the need for up and down-casting by

using the vmm_sb_ds_typed class. The vmm_tlm_analysis_export macro creates a parameterized

analysis export that we can then instantiate inside our scoreboard and subsequently connect in our

testbench environment. Also, the parameterized analysis export defines the write() method to call the

specific task with the corresponding write_<name> so we can give each analysis export its own unique

behavior. In this case, we define the “exp” analysis port to place the expected data into the scoreboard,

and the “inp” analysis port to pass the actual data for comparison (using the compare() method).

The testbench environment

Now that each component in the testbench is defined, we can bring them all together into one unified

testbench environment. If you recall in our testbench diagram, there are several TLM connections that

need to be made between the monitors and the scoreboard. The TLM bind method will be used to

connect these.

Since the monitors and drivers get a copy of the virtual interface through the VMM configuration

mechanism, a testbench would not normally be required to also have a reference. However, our SPI

design needs some specific initialization before running any tests. These initializations require driving

signals into the design so the testbench environment also needs a reference to the virtual interface. A

perfect place for these initializations is during the VMM 1.2 implicit phase called reset_ph. This phase

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 16

will run before the testcase starts so the environment can bring up the design in a good state. Here is

what our environment will look like:

class wb_spi_env extends vmm_group;

 virtual dut_intf dut_if;

 wb_subenv wb_sub;

 spi_monitor spi_mon;

 wb_spi_scoreboard wb_spi_sb;

 `vmm_typename(wb_spi_env)

 // Constructor

 function new (string name, string inst, vmm_group parent = null);

 super.new(name, inst, parent);

 endfunction : new

 // Build the member objects

 function void build_ph();

 super.build_ph();

 // Create the WB subenvironment

 wb_sub = new("wb_subenv", "wb_sub", this);

 // Create the SPI monitor

 spi_mon = new("spi_monitor", "spi_mon", this);

 // Create the scoreboard

 wb_spi_sb = new("wb_spi_sb");

 `vmm_note(this.log, "Built wb_spi_env ...");

 endfunction : build_ph

 // Connect everything together

 function void connect_ph();

 bit is_set;

 dut_if_wrapper if_wrp;

 `vmm_note(this.log, "Connect phase... ");

 // Grab the interface wrapper for the virtual interface

 if ($cast(if_wrp, vmm_opts::get_object_obj(is_set,

 this, "dut_intf"))) begin

 if (if_wrp != null)

 this.dut_if = if_wrp.dut_if;

 else

 `vmm_fatal(log, "Cannot find DUT interface!!");

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 17

 end

 // Hook up the monitors to the scoreboard

 wb_sub.wb_mon.sb_ap.tlm_bind(wb_spi_sb.exp_ap);

 spi_mon.sb_ap.tlm_bind(wb_spi_sb.inp_ap);

 // Add monitor to end-of-test consensus

 vote.register_xactor(spi_mon);

 endfunction : connect_ph

 // Start of simulation phase

 function void start_of_sim_ph();

 if (dut_if == null)

 `vmm_fatal(log, "Virtual interface not connected!");

 endfunction

 // Reset the DUT

 task reset_ph();

 super.reset_ph();

 // Initial values

 `vmm_note(this.log, "Reseting the DUT ... ");

 dut_if.wb_adr_i = {AWIDTH{1'bx}};

 dut_if.wb_dat_i = {DWIDTH{1'bx}};

 dut_if.wb_cyc_i = 1'b0;

 dut_if.wb_stb_i = 1'bx;

 dut_if.wb_we_i = 1'hx;

 dut_if.wb_sel_i = {DWIDTH/8{1'bx}};

 // Reset the DUT

 dut_if.wb_rst_i = 0;

 #20;

 dut_if.wb_rst_i = 1;

 #200;

 dut_if.wb_rst_i = 0;

 #20;

 `vmm_note(this.log, "The DUT is now reset.");

 endtask : reset_ph

endclass : wb_spi_env

Creating a test case and scenario library

With the environment defined, we can now turn to creating stimulus for our design. While we often

think of our testcases as creating our stimulus, when we use scenarios that often is not the case.

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 18

Instead, we define our stimulus in a library of hierarchical scenarios—i.e., scenario upon scenario calling

other scenarios—and our tests simply decide which scenarios to execute.

To create our scenario library, we can start with the most basic Wishbone scenario—a read or write bus

operation. When we defined our scenario generator as `vmm_scenario_gen(wb_spi_trans, …), the

macro automatically defined for us a parameterized single-stream scenario called

wb_spi_trans_scenario. Using this new class, we can create a simple bus operation as follows:

// wb_op_scn - Sequence to perform a WB operation (read or write)

class wb_op_scn extends wb_spi_trans_scenario;

 rand bit [AWIDTH-1:0] my_addr;

 rand bit [DWIDTH-1:0] my_data;

 rand trans_t my_kind;

 `vmm_typename (wb_op_scn)

 function new();

 define_scenario("wb_op_scn", 0);

 endfunction

 virtual task apply(wb_spi_trans_channel channel,

 ref int unsigned n_inst);

 wb_spi_trans tr = new();

 if (tr.randomize with {

 addr == my_addr;

 data == my_data;

 kind == my_kind;

 }) begin

 tr.display();

 channel.put(tr);

 n_inst++; // Increment transaction count

 end

 endtask

endclass

The my_addr, my_data, and my_kind members are random control knobs for our scenario. When the

scenario is invoked from other scenarios, it can be directed by setting either those knobs or leaving

them to the randomize() function. The scenario generator requires an apply() method so we have

included one that creates a transaction, randomizes it, and sends it on through the scenario generator’s

channel, which is passed as an argument to apply(). We also call define_scenario() in the constructor to

register the scenario, define its maximum transaction stream length, and its scenario kind. A scenario by

default will create a random number of transactions so we set our maximum transaction stream length

to 0 since we want to control the creation of the transaction objects.

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 19

Now, we can create a read and write scenario by simply extending our basic Wishbone scenario and

constraining the kind to be RX or TX, respectively:

// wb_read - Scenario to perform a WB read transaction

class wb_read_scn extends wb_op_scn;

 `vmm_typename (wb_read_scn)

 function new();

 define_scenario("wb_read_scn", 0);

 endfunction

 constraint kind_c { my_kind == RX; }

endclass

// wb_write - Scenario to perform a WB write transaction

class wb_write_scn extends wb_op_scn;

 `vmm_typename (wb_write_scn)

 function new();

 define_scenario("wb_write_scn", 0);

 endfunction

 constraint kind_c { my_kind == TX; }

endclass

We can instantiate the wb_read_scn or wb_write_scn scenarios inside of other scenarios to create what

is called a hierarchical scenario.

With these scenarios defined, we can now create a scenario that will write from the Wishbone interface

to the SPI output by instantiating the read and/or write scenarios and calling its apply() method. Such a

scenario is referred to as a hierarchical scenario. Our SPI design will start transmitting when its GO_BSY

bit in the control register is set so we will create a scenario to setup all the SPI transfer registers and

then tell it to go:

// wb_to_spi - Scenario to send data from the WB to the SPI interface.

class wb_to_spi_scn extends wb_spi_trans_scenario;

 rand bit [3:0][DWIDTH-1:0] data;

 rand ctrl_t ctrl; // Controls DUT configuration

 rand divider_t divider;

 rand ss_t ss;

 wb_write_scn wb_write = new(); // Instance of write scenario

 constraint divider_c {

 divider[31:16] == 0; // Reserved

 divider[15: 0] inside { [0 : 100] }; // Reasonable clk freq

 }

 constraint ctrl_c {

 // Configure control reg for SPI transfer (GO_BSY not set yet)

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 20

 ctrl[31:7] == ((A_SS_BIT | IE_BIT | LSB_BIT | TX_NEG | RX_NEG) >> 7

);

 }

 constraint ss_c { ss == '1; } // Only one slave select

 `vmm_typename (wb_to_spi_scn)

 function new();

 define_scenario("wb_to_spi_scn", 0);

 endfunction

 virtual task apply(wb_spi_trans_channel channel,

 ref int unsigned n_inst);

 // Write data into the TX registers

 wb_write.randomize with { my_addr == SPI_TX_RX0;

 my_data == data[0]; };

 wb_write.apply(channel, n_inst);

 if (ctrl.char_len > 32 || ctrl.char_len == 0) begin

 wb_write.randomize with { my_addr == SPI_TX_RX1;

 my_data == data[1]; };

 wb_write.apply(channel, n_inst);

 end

 if (ctrl.char_len > 64 || ctrl.char_len == 0) begin

 wb_write.randomize with { my_addr == SPI_TX_RX2;

 my_data == data[2]; };

 wb_write.apply(channel, n_inst);

 end

 if (ctrl.char_len > 96 || ctrl.char_len == 0) begin

 wb_write.randomize with { my_addr == SPI_TX_RX3;

 my_data == data[3]; };

 wb_write.apply(channel, n_inst);

 end

 // Write the configuration registers

 wb_write.randomize with { my_addr == SPI_DIVIDER;

 my_data == divider; };

 wb_write.apply(channel, n_inst);

 wb_write.randomize with { my_addr == SPI_SS;

 my_data == ss; };

 wb_write.apply(channel, n_inst);

 // Write to the control register but don't set the GO bit yet

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 21

 wb_write.randomize with { my_addr == SPI_CTRL;

 my_data == ctrl; };

 wb_write.apply(channel, n_inst);

 // Set the GO bit to perform the SPI transfer

 ctrl |= GO_BIT;

 wb_write.randomize with { my_addr == SPI_CTRL;

 my_data == ctrl; };

 wb_write.apply(channel, n_inst);

 endtask

 `vmm_class_factory(wb_to_spi_scn)

endclass

With our Wishbone to SPI transfer scenario defined, we can now turn to writing our first test case. Tests

in VMM are derived from the vmm_test class. The test case will configure our SPI testbench

environment and tell the scenario generator the appropriate scenario(s) to run—in this case, the

wb_to_spi_scn scenario. The testcase will be passed a reference to the instantiated environment in its

constructor and configure it in the start_of_sim_ph phase before the scenario generator executes in the

run_ph phase. Here is what a simple test would look like:

class wb_test1 extends vmm_test;

 wb_spi_env my_env;

 `vmm_typename(wb_test1)

 function new(string name, wb_spi_env my_env);

 super.new(name);

 this.my_env = my_env;

 endfunction

 function void start_of_sim_ph;

 wb_to_spi_scn scn = new();

 // Remove the atomic scenario

 my_env.wb_sub.scn_gen.scenario_set.delete();

 // Register test scenario

 my_env.wb_sub.scn_gen.register_scenario("wb_to_spi", scn);

 // Specify number of scenarios to run

 vmm_opts::set_int("num_scenarios", 1, this);

 endfunction

 // Wait until the scenario generator is finished

 virtual task shutdown_ph();

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 22

my_env.wb_sub.scn_gen.notify.wait_for(wb_spi_trans_scenario_gen::

DONE);

 endtask

endclass : wb_test1

This testcase registers with the scenario generator the scenario it wants to run (wb_to_spi) and then

specifies the number of times for the generator to execute the scenario. It also waits on the generator

to make sure that it does not finish before all the stimulus has been generated.

A program top and simulation

While we have a harness/wrapper around the design and a top-level class-based environment,

somewhere we need to instantiate everything and kick off the VMM machinery. For that, we will use a

program block. The program block will instantiate the design wrapper, the class-based testbench, and

testcase and start the simulation. It will also setup the virtual interface wrapper that will be used in our

driver and monitors. Our program top looks like the following:

program wb_spi_top;

 import wb_spi_pkg::*; // Load in the testbench

 wb_spi_env e;

 wb_test1 t;

 dut_if_wrapper i;

 //////////////////////////////////////

 // OK, now run the test

 //////////////////////////////////////

 initial

 begin

 // Create the environment

 e = new("wb_spi_env", "e");

 // Setup the DUT interface wrapper

 i = new("dut_if_wrapper", wb_spi_tb.dut_if);

 vmm_opts::set_object("dut_intf", i);

 // Tests

 t = new("wb_test1", e);

 vmm_simulation::run_tests(); // Kick off VMM

 end

endprogram : wb_spi_top

Notice, all of our testbench and test classes are imported from a package that we create by simply using

`include for all of the source code files into a package. We store a hierarchical reference to our interface

into the dut_if_wrapper and then use the configuration mechanism so the driver and monitors can grab

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 23

a reference to it inside our testbench. To start the VMM simulation, we invoke

vmm_simulation::run_tests(), which starts executing wb_test1 since it is the only test instantiated. The

run_tests() method can also be controlled on the command line by using the following options:

+vmm_test_file=<filename> File list of test to run

+vmm_test=<test> Test case to run

+vmm_test=<test>+<test>+... List of test cases to run

+vmm_test=ALL_TESTS Run all declared tests

Now we can run our VCS simulation …

vcs -R –sverilog file1.sv file2.sv …

and see our environment building, generating stimulus, driving, monitor, and checking:

Chronologic VCS simulator copyright 1991-2009

Contains Synopsys proprietary information.

Compiler version D-2009.12; Runtime version D-2009.12; Feb 11 03:09 2010

Normal[NOTE] on wb_spi_env(e) at 0:

 Built wb_spi_env ...

Normal[NOTE] on wb_subenv(e:wb_sub) at 0:

 Creating subenvironment ...

Normal[NOTE] on wb_monitor(e:wb_sub:wb_mon) at 0:

 Building analysis port...

Normal[NOTE] on wb_spi_env(e) at 0:

 Connect phase...

Normal[NOTE] on vmm_simulation(class) at 0:

 Running Test Case wb_test1

class wb_spi_trans (0.0.0)

addr='h0

data='h4f92090d

kind=TX

Normal[NOTE] on wb_spi_env(e) at 0:

 Reseting the DUT ...

Normal[NOTE] on wb_spi_env(e) at 24000:

 The DUT is now reset.

Normal[NOTE] on spi_monitor(e:spi_mon) at 24000:

 Monitoring the SPI bus ...

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 24000:

 Starting the WB driver ...

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 24000:

 Getting packet ...

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 24000:

VMM 1.2 – SPI Tutorial Doug Smith, Doulos, www.doulos.com

Copyright 2010 by Doulos. All rights reserved. All information is provided “as is” without warranty of any kind. 24

 Transmitting packet ...

class wb_spi_trans (0.0.0)

addr='h0

data='h4f92090d

kind=TX

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 24000:

 wb_write task: addr = 00000000, data = 4f92090d

Normal[NOTE] on wb_monitor(e:wb_sub:wb_mon) at 24000:

 Monitoring the WB bus

class wb_spi_trans (0.0.0)

addr='h4

data='h48aa5e94

kind=TX

Normal[NOTE] on wb_monitor(e:wb_sub:wb_mon) at 26500:

 addr = 00, data = 4f92090d

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 26600:

 Getting packet ...

Normal[NOTE] on wb_driver(e:wb_sub:wb_drv) at 26600:

 Transmitting packet ...

.

.

.

Normal[NOTE] on spi_monitor(e:spi_mon) at 39503600:

 Sending transaction to scoreboard...

class mon_sb_trans (0.0.0)

addr='h0

data='h166928d9dca2f8a4865b

ctrl='h0

kind=RX

Normal[NOTE] on Data Stream Scoreboard(wb_spi_sb) at 39503600:

 Checking data...

Normal[NOTE] on wb_subenv(e:wb_sub) at 39503600:

 Scenario generation done...

Simulation PASSED on /./ (/./) at 39503600 (0 warnings, 0 demoted

errors & 0 demoted warnings)

Normal[NOTE] on vmm_simulation(class) at 39503600:

 Test Case wb_test1 Done

$finish at simulation time 39503600

 V C S S i m u l a t i o n R e p o r t

Time: 395036000 ps

CPU Time: 0.110 seconds; Data structure size: 0.0Mb

And there you have it!—a simple environment demonstrating the major features of VMM.

