

1

Using your C compiler to exploit

NEON™ Advanced SIMD

Copyright ©2010, Doulos, All rights reserved

http://www.doulos.com/arm/

Marcus Harnisch <marcus.harnisch@doulos.com>

Abstract
With the v7-A architecture, ARM has introduced a powerful SIMD implementation called NEON™.

NEON is a coprocessor which comes with its own instruction set for vector operations. While NEON

instructions could be hand coded in assembler language, ideally we want our compiler to generate

them for us. Automatic analysis whether an iterative algorithm can be mapped to parallel vector

operations is not trivial not the least because the C language is lacking constructs necessary to

support this. This paper explains how the RealView compiler tools (RVCT) and other modern

compilers use a blend of sophisticated analysis techniques and language extensions to fulfill their

job.

Introduction
Many algorithms in today’s multi-media addicted world are ideally suited for vector operations

including digital filtering (audio), pixel processing (video), matrix operations (3D, DCT). Some lesser

known applications might perhaps include automation (drives, robotics).

Most vector operations carry out the same operation on all elements of their operand vector(s) in

parallel (Figure 1), hence the term Single Instruction Multiple Data (SIMD) which has its roots in a

computer architecture classification system called “Flynn’s Taxonomy”.
1

Available exclusively to main frame computers and digital signal processors (DSP) for a long time,

SIMD didn’t make it into mainstream processors until the Intel Pentium MMX hit the market in 1996.

1
 Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE Trans. Comput., Vol. C-21, pp. 948,

1972.

Op Op Op Op

Figure 1 SIMD Operation

Using your C compiler to exploit NEON™ Advanced SIMD

Since then all major desktop processors

names such as AltiVec, 3DNow!,

After software had caught up with this development, desktop applications would see a significant

performance boost. But the picture looked quite different

signal processing (GSM, CDMA), real

while the relatively low performance requirements of

handsets did not justify the extra complexity and cost of large processor extensions.

With smarter applications on mobile

worthwhile looking into this again.

SIMD in ARM processor cores

Advanced DSP and SIMD

ARM started an effort of adding

(Figure 2). This flavor of a SIMD instruction

therefore at the same time rather simple to implement, and very eff

designed for.
2

Since vectors in v6 SIMD are stored

vector size of only 32 bits, i.e. the maximum vector size is

With some rather well designed

processing tasks involving compl

represented in a 16 bit fixed point

2
 Sloss, M. et al, ARM System Developer’s Guide, Elsevier, 2004, pp. 549

Figure 2 DSP/SIMD support in the ARM architecture

Using your C compiler to exploit NEON™ Advanced SIMD

2

Since then all major desktop processors started including SIMD in some form or another using brand

, SSE, and most recently – NEON.

After software had caught up with this development, desktop applications would see a significant

he picture looked quite different still in the embedded space

signal processing (GSM, CDMA), real-time performance required dedicated processor

the relatively low performance requirements of application software on, say,

handsets did not justify the extra complexity and cost of large processor extensions.

smarter applications on mobile devices and shrinking process technologies

worthwhile looking into this again.

SIMD in ARM processor cores

dvanced DSP and SIMD (ARMv6)

ARM started an effort of adding advanced DSP and basic SIMD instructions with architecture v6

SIMD instruction set is executed in the regular integer pipeline

at the same time rather simple to implement, and very effective at wh

stored in core registers, the main limitation of this approach

the maximum vector size is four (eight bit elements

 two-element vector instructions v6 SIMD helps in

processing tasks involving complex numbers arithmetic, where real and imaginary part are

16 bit fixed point format. That way an entire complex number can be

Sloss, M. et al, ARM System Developer’s Guide, Elsevier, 2004, pp. 549-559

DSP/SIMD support in the ARM architecture

form or another using brand

After software had caught up with this development, desktop applications would see a significant

embedded space. For actual

required dedicated processors anyhow,

application software on, say, early mobile

handsets did not justify the extra complexity and cost of large processor extensions.

technologies it became

SIMD instructions with architecture v6

the regular integer pipeline and was

at what it had been

of this approach is a total

elements, e.g. pixel data).

element vector instructions v6 SIMD helps in many signal

arithmetic, where real and imaginary part are

entire complex number can be stored in a

Using your C compiler to exploit NEON™ Advanced SIMD

3

single data word. With the availability of these instructions in the just announced Cortex-M4

processor core, v6 SIMD proves to be far from obsolete.

Currently ARMv6 SIMD instructions won’t be generated automatically by the RealView C compiler.

These instructions are accessible via assembler language and compiler intrinsics only.

Advanced SIMD and NEON (ARMv7-A)

With multimedia content becoming ubiquitous even in the power-sensitive market for mobile

devices, the introduction of a comprehensive set of SIMD operations became essential to

maintaining a leading position in the embedded processor market.

With architecture v7-A, application processors (all members of the ARM Cortex-A family) got the

option to implement a SIMD instruction set which ARM trademarked “NEON”. Compatible cores

from other vendors will use different names (e.g. VeNum in Qualcomm’s Scorpion core) although it

is rather likely that NEON will become a synonym for the generic term “Advanced SIMD”.

The goal of NEON is to provide a powerful, yet comparatively easy to program SIMD instruction set

that covers integer data types of up to 64 bit width as well as single precision floating point (32 bit).

Requiring wide data paths, NEON cannot be part of the ALU pipeline of the processor. Instead it

shares its sixteen 128 bit registers with the vector floating point unit. This additional hardware

complexity aligns nicely with new possibilities that modern ASIC technologies offer in terms of

power consumption and gate count.

The NEON instruction set is well defined and relatively easy to understand. Developers familiar with

the ARM instruction sets will be able to write NEON code without too much effort. ARM has

structured the instruction syntax according to different data types, result behavior, etc. The

challenge is rather in memorizing which combinations are available for each base instruction.

With Advanced SIMD being executed inside the processor core, it has several benefits over a

dedicated DSP:

• Only one compiler for code generation needed

• Instruction set common for all NEON implementations

• Same instruction stream and flow control as rest of application

• No configuration necessary (other than enabling)

• Same memory interface benefits from caches

• No synchronization overhead

Executed on the same processor core, NEON performance is influenced by context switching

overhead, non-deterministic memory access latency (cache/MMU access) and interrupt handling.

Advanced SIMD cannot compete with DSP off-loading in every field, but shines in programs where

an application interacts a lot with the signal processing part of the code. In an AMP-like situation in

which a DSP could operate largely independently of the main CPU, having a silicon side-kick could

give a significant performance advantage.

Using your C compiler to exploit NEON™ Advanced SIMD

4

NEON Architecture
NEON is integrated into the ARM core as a coprocessor. Since NEON shares registers with the vector

floating point unit (VFP), the latter will always be present in cores with Advanced SIMD extensions.

NEON stores operands and results in a set of 16 quad-word registers (q0—q15), that can be used

alternatively as 32 double-word registers (d0—d31). Values can be moved between NEON registers

and core registers (r0—r15), as well as between memory and NEON registers. Data types supported

by NEON are vectors of 8, 16, 32, and 64 bit integer, as well as single precision (32 bit) floating point

values and polynomials.

The Advanced SIMD instruction set comprises of arithmetic/logical instructions including standard

operations (e.g. add, subtract, and multiply), shift and complex bit operations, as well as complex

operations like square root, reciprocal estimate. All of these instructions will accept modifiers

determining operand and result data types and optional rounding, saturation, doubling/halving

behavior.

For accessing memory, there are various instructions available that support simple streaming of

scalar values between consecutive memory addresses and vectors, and data structure streaming,

where corresponding elements of adjoining data structures will be regarded as vectors.

Hand-coding NEON instructions will enable an expert to write the fastest/smallest possible

implementation of a given algorithm, but this comes at a price. Even well written assembler code is

harder to comprehend than well written code in a higher language. It is often not possible to tell

whether a side effect of an instruction is part of the algorithm or not. Accordingly, maintenance and

development costs are quite high.

In modern superscalar CPU cores, the processing pipelines are normally much too complex to be

fully understood by even better-than-average developers. Comprehending the exact scheduling

implications that an instruction might cause with respect to other instructions got extremely difficult

in superscalar cores. The additional NEON complexity with feedback into the core pipeline doesn’t

exactly help. A quote from the Cortex-A8 Technical Reference Manual makes it quite clear:

The complexity of the processor makes it impossible to guarantee precise timing information with

hand calculations. The timing of an instruction is often affected by other concurrent instructions,

memory system activity, and additional events outside the instruction flow. Describing all possible

instruction interactions and all possible events taking place in the processor is beyond the scope of

this document. Only a cycle-accurate model of the processor can produce precise timings for a

particular instruction sequence.

Figure 3 NEON instruction examples

VADD.I16 D0,D1,D2 ; Four 16-bit integer additions
VSUBL.I64 Q8,D1,D5 ; Two 32-bit integer subtraction, 64 bit result
VMUL.I16 D1,D7,D4[2] ; Four 16 bit integer by 16-bit scalar mult.
VQADD.S16 D0,D1,D2 ; Four 16-bit integer saturating additions
VLD1.32 {D0,D1},[R1]!; load 4 32-bit elements into D0 and D1,
 ; and update R1
VST1.32 {D0,D1},[R0]!; store 4 32-bit elements from D0 and D1,
 ; and update R0

Using your C compiler to exploit NEON™ Advanced SIMD

5

When assembler programming is considered, it is important to understand that the ARM

Architecture Reference Manual defines Advanced SIMD on the instruction set and functional level

only. Its actual hardware implementation, connection to the core logic and memory interface differs

even within the ARM Cortex-A family (Figure 4).

Consequently, NEON code that executes nearly optimal on one ARM CPU might not deliver the same

performance on others. While compatible on the instruction set level, for optimal results a separate

version of hand-optimized assembler code for each CPU core will have to be maintained.

Accessing NEON from C
Rather than programming in assembler, we might seriously consider leaving it to the experts to

schedule our instructions properly. These experts would be the C compiler development team.

But first and foremost, two things have to be considered when executing NEON code within a C

program:

• Make sure the co-processors are actually enabled, or you will end up in the “Undefined

Instruction” exception handler.
3

• If you are planning to process single precision floating point in NEON, remember that NEON

floating point operations are not strictly IEEE754 compliant. Let your compiler know that you

don’t want that; otherwise it can’t employ NEON for the task.

Having said this we will now introduce two approaches to tap the power of NEON in a C program:

Compiler intrinsics (or builtins in GNU jargon) and auto-vectorization.

Compiler intrinsics

Intrinsics are function-like symbols, which will cause the compiler to inline a corresponding

instruction sequence.
4
 In some cases, intrinsics allow you to implement your algorithm efficiently

3
 Same is true, of course, for assembler programs. But these guys usually remember those little details.

Figure 4NEON integration

Fetch

stages

Decode

stages

Execute

stages

Load/Store

NEON/

VFP

Cortex-A9 (similar in Cortex-A5)

Fetch

stages

Decode

stages

Execute

stages

Load/Store

NEON/

VFP

Cortex-A8

Using your C compiler to exploit NEON™ Advanced SIMD

6

and generic at the same time, as intrinsics will be translated to according assembler instructions

depending on the target architecture. In most cases however, the compiler will generate a specific

instruction (sequence) and complain if that isn’t supported by the target architecture. In the

RealView Compiler Tools (RVCT), intrinsics are meant to replace the “inline assembler” mechanism,

which has been deprecated for ARMv7 cores (no Thumb support). Looking like regular function calls,

intrinsics can also help to keep software tool chain independent by defining them as regular

functions for compilers that don’t support intrinsics.

To access Advanced SIMD instructions using RVCT intrinsics you will have to include a header file

called arm_neon.h. This file is huge and defines an intrinsic for every NEON instruction including all

its variants. In order to use vectors in C code, special data types have been defined (Figure 5)

These data types are opaque
5
 and the only safe way to access their elements is via intrinsics. The

data types are defined by the AAPCS
6
 and thus identical to those used by GCC, ensuring compatibility

at least on this level.

Let’s have a look at an example (Figure 6). The function fir_neon() below implements a 64 tap FIR

filter, given the parameters s (source data), c (coefficients), y (results), num_samples (number of

samples). Each element in the output data array gets assigned the sum of weighted input samples.

Looking at this nested loop, we find that there is some potential of using vector arithmetic in the

inner loop. Thanks to the associativity of additions, we can shuffle things around. Rather than using

just single accumulator (result), we could have four of them, one in each “vector lane”. After

exiting the inner loop, all accumulators will be added to form the result, which will be written out to

memory again. An intermediate representation of this idea is shown in Figure 7.

4
 There are other intrinsics, too. See the C Compiler Reference Manual for details.

5
 You really don’t want to see their definitions. If you do, you’ll find them in arm_neon.h.

6
 ARM Architecture Procedure Call Standard, ARM IHI0042D, Appendix A.2

void fir_neon(const int16_t *s, const int16_t *c,
 int32_t *y, const uint32_t num_samples)
{
 uint32_t i, j;
 int32_t result = 0;

 for (i = 0; i < num_samples; i++) {
 result = 0;

 for (j = 0; j<64; j++) {
 result += c[j] * s[i+j];
 }
 y[i] = result;
 }
}

int32x4_t // vector of four 32bit elements
uint16x8_t // vector of eight 16bit elements
int8x8x2_t // array of two vectors with eight 8 bit elements

Figure 5 NEON instrinsics data type examples

Figure 6 FIR example

Using your C compiler to exploit NEON™ Advanced SIMD

7

You will have noticed that this implementation requires num_samples to be divisible by four. This

simplification shall be legal for the purpose of this example. You could always add an assert() to

make sure.

Let us try now to translate this into NEON intrinsics. First, the header file arm_neon.h has to be

included to define all vector data types and intrinsics. The array o[] will have to be turned into a

real vector type. Since we want to process four samples at a time, the type int32x4_t (vector of

four 32 bit signed integer values) would be appropriate. Note that we cannot directly access source

and coefficient data in memory as in the two previous examples. We will have to define two vectors

each holding four samples. Since source data and coefficients are represented by 16 bit integers, we

will declare si and ci as int16x4_t. For loading data into a vector, we’ll have to use intrinsics. In

this case a vld1_s16() will do, where the s16 part indicates that the data type of vector elements

would a signed 16 bit integer.

void fir_neon(const int16_t *s, const int16_t *c,
 int32_t *y, const uint32_t num_samples)
{
 uint32_t i, j;
 int32_t o[4];

 for (i = 0; i < num_samples; i++) {
 o[0] = o[1] = o[2] = o[3] = 0;

 for (j = 0; j < 64; j+=4) {
 o[0] += c[j+0] * s[i+j+0];
 o[1] += c[j+1] * s[i+j+1];
 o[2] += c[j+2] * s[i+j+2];
 o[3] += c[j+3] * s[i+j+3];
 }
 y[i] = o[0] + o[1] + o[2] + o[3];
 }
}

Figure 7 FIR: Manually unrolled inner loop

#include <arm_neon.h>
void fir_neon(const int16_t *s, const int16_t *c,
 int32_t *y, const uint32_t num_samples)
{
 uint32_t i, j;
 int16x4_t si, ci;
 int32x4_t o;

 for (i = 0; i < num_samples; i++) {
 o = vdupq_n_s32(0);
 for (j = 0; j < 64; j+=4) {
 si = vld1_s16(s+i+j);
 ci = vld1_s16(c+j);
 o = vmlal_s16(o, si, ci);
 }
 y[i] = vgetq_lane_s32(o, 0)
 + vgetq_lane_s32(o, 1)
 + vgetq_lane_s32(o, 2)
 + vgetq_lane_s32(o, 3);
 }
}

Figure 8 FIR: Implementation using Intrinsics

Using your C compiler to exploit NEON™ Advanced SIMD

8

After loading both, coefficients and samples vectors, we can now multiply/accumulate si, and ci

with our accumulator vector o, using an vmlal_s16(). This all makes sense, but how do we add up

the accumulators in the end? Being C programmers, we are going to sum all vector elements by

extracting their values. This is a big mistake as we will see in Figure 9.

The compiler won’t optimize your code when it sees intrinsics. It will slavishly translate your

commands in the same order as you wrote them. Using C statements, the unsuspecting developer

might believe that detailed knowledge of the NEON instruction set wasn’t needed. However, NEON

intrinsics are just assembler in disguise, replacing the now deprecated inline assembler in RVCT.

Since intrinsics are treated as being similar to a function call, the loop-optimizer assumes potential

side effects and thus won’t optimize the loop. Since we are using variables instead to hold vectors,

the intrinsics approach also hides the register allocation. It is rather easy this way to exceed the

number of available NEON registers, causing expensive stack operations for storing and restoring

values.

In order to put NEON intrinsics to their best use, know which instructions you want to see in the

generated code. Ideally you would use NEON intrinsics in places where there is not much regular

ARM code around. The lack of loop optimization and the overhead of moving data back and forth

between ARM core registers and NEON registers might not be obvious at the C source code level.

Instruction scheduling by the compiler is not affected by the specified processor type it seems.

To summarize: NEON intrinsics give you access to the Advanced SIMD instruction set, but are hardly

easier to use than writing assembler language to begin with (in some cases worse actually) and just

like assembler, they require NEON architecture and instruction set knowledge. Their main advantage

is the fact that NEON intrinsics can be inlined with other C statements.

Inefficient horizontal

addition in ARM core

registers

|L1.288|
 VMOV.I32 q0,#0
 MOV r12,#0
 ADD r4,r0,r5,LSL #1
|L1.300|
 ADD r6,r4,r12,LSL #1
 VLD1.16 {d3},[r6]
 ADD r6,r1,r12,LSL #1
 ADD r12,r12,#4
 VLD1.16 {d2},[r6]
 CMP r12,#0x40
 VMLAL.S16 q0,d3,d2
 BCC |L1.300|
 VMOV.32 r12,d0[0]
 VMOV.32 r4,d0[1]
 ADD r12,r12,r4
 VMOV.32 r4,d1[0]
 ADD r12,r12,r4
 VMOV.32 r4,d1[1]
 ADD r12,r12,r4
 STR r12,[r2,r5,LSL #2]
 ADD r5,r5,#1
 CMP r5,r3
 BCC |L1.288|

Figure 9 Code generated from intrinsics example

Using your C compiler to exploit NEON™ Advanced SIMD

9

The exact impact of scheduling instructions in a certain way becomes harder to grasp with every new

generation of CPU cores. Intrinsics might not save you from having to maintain separate versions of

your code for different cores.

Using auto-vectorization
The first paragraph of the previous section said it all: leave it to the experts. The idea of using

compilers is to throw arbitrary high-level code at the compiler and it will make best use of all

available processor resources. This is the fundamental task of a compiler already, so why shouldn’t

this also apply to SIMD or NEON? With a special license, RVCT supports auto-vectorization.

Alternatively GCC supports this, too.

The compiler will analyze your code and find out whether certain loops could be mapped to a vector

algorithm. In that sense, vectorization is closely related to loop optimization. RVCT enables loop

transformation and vectorization only if highest optimization levels are chosen and the optimization

goal is execution time.

Going back to our original FIR filter example (Figure 6), we now enable the RVCT auto-vectorizer with

these command line options:

armcc --cpu=Cortex-A9 -O3 -Otime --vectorize --remarks -c fir_neon.c

The --remarks option causes the compiler to print diagnostic information about what it was able

to deduce from our source code description. With our unmodified source code the report said:

"fir_neon.c", line 66: #2171-D: Optimization: Outer loop unrolled inside
inner loop (i)
"fir_neon.c", line 71: #1679-D: Optimization: Loop vectorized (j)

The last statement indicates that the compiler was able to vectorize the loop automatically. But not

only that, the compiler seemed to have transformed the loop structure. Let’s see for ourselves:

|L1.80|
 VLD1.16 {d4},[r1]!
 SUBS r7,r7,#1
 VLD1.16 {d21},[r1]!
 VLD1.16 {d18},[r12]!
 VMLAL.S16 q0,d4,d18
 VLD1.16 {d5},[r5]!
 VMLAL.S16 q1,d4,d5
 VLD1.16 {d19},[r6]!
 VMLAL.S16 q3,d4,d19
 VLD1.16 {d20},[r4]!
 VMLAL.S16 q8,d4,d20
 VLD1.16 {d22},[r12]!
 VMLAL.S16 q0,d21,d22
 VLD1.16 {d23},[r5]!
 VMLAL.S16 q1,d21,d23
 VLD1.16 {d24},[r6]!
 VMLAL.S16 q3,d21,d24
 VLD1.16 {d25},[r4]!
 VMLAL.S16 q8,d21,d25
 BNE |L1.80|

samples

coefficients

d18

d5

d19

d20

d22

d23

d24

d25

d4 d21

q2

q0

q1

q8

MAC

Using your C compiler to exploit NEON™ Advanced SIMD

10

The first thing we notice in the main loop is that there is a rather long contiguous sequence of NEON

instructions. Only the loop counter decrement
7
 and the conditional branch are executed in the core

pipeline. We can also see what was meant by that remark about the “outer loop unrolled inside

inner loop”. The inner loop loads eight coefficients into d18 and d21, to be multiplied with eight

samples at four different starting points (r12, r5, r6, r4). So not only did the loop get vectorized, we

are also processing four iterations of the outer loop in parallel, thereby reusing coefficients data that

had been fetched from memory already.

When summing up the individual accumulator vectors, efficient “horizontal addition” is used

(VPADD) and the results are transferred back to ARM core registers (Figure 11).

NEON wizards might object that this could be done even more efficiently. There is perhaps

additional optimization potential using NEON internal register transfers rather than repeated access

to the same memory locations. Maybe this is actually true, but considering the development and

maintenance costs it may not be worth investigating this except in most critical places. Even proving

that a hand optimized assembler solution performs better than another implementation in a realistic

environment could turn out to be rather difficult.

In an ideal world, auto-vectorization would work with arbitrary code, but of course it doesn’t. Just

flipping compiler switches will not result in code that executes significantly faster. To get good

results developers should follow some basic rules for writing code that makes it easy for the

compiler to map operation to available SIMD vectors.

Know your algorithm

If you can see clearly how your source code maps to vector operations, chances are the compiler

can, too.

7
 Did I write decrement? Thanks to loop transformation the variable gets decremented, while in the source

code the variable is incremented.

 VADD.I32 d0,d0,d1
 VPADD.I32 d0,d0,d0
 VMOV.32 r1,d0[0]
 VADD.I32 d0,d2,d3
 VPADD.I32 d0,d0,d0
 VMOV.32 r12,d0[0]
 VADD.I32 d0,d6,d7
 VPADD.I32 d0,d0,d0
 […]
 VMOV.32 r4,d0[0]
 VADD.I32 d0,d16,d17
 […]
 VPADD.I32 d0,d0,d0
 […]
 VMOV.32 r5,d0[0]

d0

d0 d1

+

+ +

d0

r1

Figure 11 FIR auto-vectorized: End of inner loop

Figure 10 FIR auto-vectorized: Inner loop

Using your C compiler to exploit NEON™ Advanced SIMD

11

Flow control in loops

With few exceptions, conditionals (if, switch-case) in loops don’t vectorize well. The ARM instruction

(as opposed to Thumb) encoding of Advanced SIMD does not allow conditional execution. In Thumb-

2 conditional execution is available indirectly via the IT instruction. In some cases you can substitute

arithmetic operations such as multiplication by a Boolean value.

Don’t terminate a loop prematurely (break, continue). The compiler will have to assume that this

could happen in any iteration, effectively making it impossible to process a vector of n elements per

iteration.

Communicating facts

Let the compiler know as much about your program as you do.

Contributing to the legendary advantage of hand-optimized code is the phenomenon that

developers writing assembler code are used to making all sorts of (valid) assumptions about the

context which certain code is being used in. Trying the same in C could prove difficult and compilers

might not even take advantage of this extra information. Modern compilers like RVCT do support

extended keywords that allow a developer to specify certain facts (__promise, __expect,

__restrict) that escape the expressiveness of the C language. These keywords and occasionally

even standard constructs will help the compiler to better understand the algorithm. A loop header

“for (i=0; i<(n & ~3); i++)”, for instance, implies that the number of iterations will always

be divisible by four so that in our example the compiler might not have to create extra code for

processing samples that do not fill an entire vector.

Another example: Assuming that according to your program logic, one of the integer-type function

parameters can only possibly assume two discrete values. Perhaps splitting the function into two

versions, one for each value of this parameter might give better results. Maybe a C++ template could

do the hard work for you.

Memory access

Think about memory access patterns. Inefficient memory access is a major reason for poor

performance. A lot of the source code out there, especially legacy code, was not written with multi-

gigahertz embedded processors sporting several cache levels in mind. Memory access latency on

these devices has a much larger impact to performance than the difference of a single perhaps

unnecessary extra instruction in an inner loop. As far as mobile devices are concerned, battery life

depends on efficient cache utilization more than on anything else.

Loading streams of consecutive data items is cache friendly and can potentially be vectorized.

Gathering data elements from (as far as the compiler knows) all over the place does not vectorize

nor does it benefit as much from having caches. High performance cores like ARM Cortex-A9 are

trying to detect regular access patterns and generate speculative memory accesses to minimize

cache misses whenever regular access crosses a cache line.

For accessing data as array, use simple expressions as index. This way, a compiler will have it easier

to identify potential vector lanes. A complex index can sometimes be broken down into setting a

start pointer from which items will be accessed as array elements.

Using your C compiler to exploit NEON™ Advanced SIMD

12

Paradox

Ironically, some of the guidelines for getting good auto-vectorization results contradict those

guidelines for generating efficient (on ARM cores anyway) non-vectorized code:

Auto-vectorization Regular code

Use arrays for accessing adjacent objects. Avoid

pointer access, which often can’t be translated

into vector operations

Avoid arrays and use pointer arithmetic. The

compiler will use more efficient addressing

modes (e.g. post-increment).

Make your local variables that represent vector

elements as small as possible, so that the

compiler packs up more into a single register.

Always use 32 bit types for local variables. They’ll

occupy a register anyway and you are spared the

zero/sign-extension overhead.

Optimization Trap

With all the effort we put into writing new C code that vectorizes well, we should revisit accrued

wisdom that while once true, may be obsolete today and turn out to be detrimental to performance

on a modern CPU. Example: The generic C implementation of a color-space conversion routine in a

popular video codec uses a look-up-table (LUT) to avoid an integer multiply-add operation. While

this operation used to be expensive and the LUT access might have been quicker on those small

cores of the time, the situation has changed completely: LUTs are often associated with poor caching

behavior and might provoke slow and power-hungry external memory access. Irregular by nature,

LUT access makes it impossible to vectorize this function. In contrast, MAC operations are quite

efficient these days and execute in the pipeline.

Verify results

While a vectorizing compiler might save you from having to come up with clever instruction

sequences, it still helps to understand the generated code in order to judge whether the compiler

did a good job. A good indicator is the RVCT output generated by the compiler option --remarks.

The GCC equivalent would be -ftree-vectorizer-verbose=x, where the argument specifies

how much information the compiler would generate.

Conclusion
Vectorizing compilers do exist and they do a great job if the description of an algorithm can be

broken down by the compiler. Sometimes the compiler needs extra help. Restructuring C code or

using extended keywords allows the compiler to extract information from our code. NEON/SIMD

knowledge is beneficial to writing SIMD-friendly C code. Thanks to a regular structure and more

efficient memory access, code that is SIMD-friendly often performs better even on those cores that

don’t implement NEON.

The advantages from having generic implementations of algorithms shouldn’t be underestimated in

product development.

Auto-vectorization is not perfect and, just as regular code optimization, will probably never be. It will

remain a tradeoff between performance and implementation cost. If you think about it, the same is

true for any type of code. However, the number of critical software routines where currently hand-

optimized assembler is essential to ensure high performance, will decrease.

Using your C compiler to exploit NEON™ Advanced SIMD

13

Further Reading
Introducing NEON™ Development Article

(http://infocenter.arm.com/help/topic/com.arm.doc.dht0002a/index.html)

NEON™ Support in Compilation Tools Development Article

(http://infocenter.arm.com/help/topic/com.arm.doc.dht0004a/index.html)

RealView
®
 Compilation Tools Compiler User Guide – “Using the NEON Vectorizing Compiler”

(http://infocenter.arm.com/help/topic/com.arm.doc.dui0205i/BABEGGJG.html)

RealView
®
 Compilation Tools Compiler Reference Guide – “Using NEON Support”

(http://infocenter.arm.com/help/topic/com.arm.doc.dui0348b/Badcdfad.html)

