
 1

Easier UVM - Coding Guidelines and Code Generation

John Aynsley
Doulos

Church Hatch, 22 Market Place
Ringwood, United Kingdom

+44 1425 471223
john.aynsley@doulos.com

Dr. Christoph Sühnel
Doulos

Freikorpsstrasse 2c
D-82487 Oberammergau

Germany
christoph.suehnel@doulos.com

ABSTRACT

This paper describes our experiences with the Easier UVM coding

guidelines and code generator with the objective of encouraging the

UVM community to think about and eventually converge upon some

set of coding guidelines for UVM. Easier UVM consists of a

comprehensive set of coding guidelines for the use of UVM and an

open-source UVM code generation tool that automatically generates

the boilerplate UVM code for a project according to these guidelines.

Easier UVM helps individuals and teams get started with UVM,

helps avoid pitfalls, helps promote best practice, and helps ensure

consistency and uniformity across projects. Easier UVM helps teams

to become productive with UVM more quickly, and reduces the

burden of maintaining a UVM codebase over time. Both the

guidelines and the tool can be taken as they are or can be used as a

starting point and modified according to the demands of a specific

project.

Keywords

SystemVerilog, UVM, functional verification, constrained random

verification, programming language, code generator

1. MOTIVATION

Over the past two years SystemVerilog has become the language of

choice for new adopters of constrained random, coverage-driven

verification, effectively displacing the earlier proprietary languages

(e and Vera) in many situations. Although e still retains a customer

base, most new adopters are choosing SystemVerilog for one reason

alone: SystemVerilog is a standard. SystemVerilog is actively

supported by all of main simulator vendors, both in the technical

sense that the simulators have robust support for most of the

language features, and in the commercial sense that the vendors

actively promote the adoption and use of SystemVerilog. There is

now an ecosystem of tool vendors, IP providers, consultants, and

training providers supporting SystemVerilog.

But SystemVerilog is not without its problems. It is an extremely

large and complex language, and the road to the current level of tool

support has not been an easy one. The sheer scale and complexity of

the task of implementing a SystemVerilog simulator has forced tool

vendors to prioritize their implementation efforts, giving most

attention to the particular language features being demanded by their

customers or perceived as necessary to meet their own product

positioning and marketing goals. Even today, there are still

differences in interpretation and implementation across the

simulators.

One very powerful business driver for the convergence of the main

SystemVerilog implementations has been the desire to win customers

from the competition by offering excellent compatibility with

whatever SystemVerilog methodology libraries the competing

vendor happens to champion. A few years back, this was AVM for

Mentor, URM for Cadence, and VMM for Synopsys. Commercial

pressures eventually lead to the convergence of these three

methodologies in a single methodology, UVM, but along the way

each tool vendor had to make sure that they fully supported the

SystemVerilog language constructs used by the competing

methodologies, and more than that, had to ensure that they

interpreted the relevant areas of the standard in a mutually consistent

way. This process became a virtuous circle, whereby the presence of

an emerging standard SystemVerilog class library put pressure on the

simulator vendors to implement the standard fully and accurately,

and the improved tool support across all the full range of vendors

lead to an increased confidence to adopt both the SystemVerilog

language and the UVM library.

Doulos has directly experienced a significant jump in the volume of

SystemVerilog training delivered with the introduction of each

standard methodology (AVM, VMM, URM, OVM, UVM), the

biggest jump appearing alongside with the introduction of UVM.

So while UVM has been a catalyst for the adoption of

SystemVerilog, the adoption of UVM itself has not been without its

challenges. While UVM is arguably an improvement over its

ancestor methodologies, it is itself complex and challenging to learn

and to use. A quick survey of UVM training classes offered by the

tool vendors themselves and by independent training providers

shows the average class length to be 4 days in a range of 3 to 5 days,

and in every case these classes assume a working knowledge of the

SystemVerilog language as a starting point. In the case of Doulos,

the typical formal training program for engineers already familiar

with Verilog would consist of a 4 day training class to teach the

verification features of the SystemVerilog language, followed by 4

days to teach UVM. Experience has shown that this level of training

is the minimum required for effective adoption: although managers

with limited budgets of time and money will often try to reduce the

extent of formal training, this is usually a false economy in that it

greatly increases the on-the-job learning time and leads to bugs and

false starts. All-in-all, the adoption of UVM requires a significant up-

skilling which is frequently underestimated.

Even assuming the highest quality training, there is still a need for

further help to get started with the first project. Training is necessary,

but it is not sufficient. User companies quote timescales from 3

months to 12 months before their engineers are fully up-to-speed

with UVM. In order to assist in the adoption process, tool vendors

offer UVM-aware graphical capture tools, text editors, simulation

environments, and debug environments. Specialist verification

consultants offer coaching and mentoring. Some vendors offer

packages combining tool purchase with training or mentoring

schemes. User companies themselves develop their own in-house

rules and coding guidelines.

The UVM base class library itself presents its own challenges. It

consists of around 300 separate SystemVerilog classes, and the

documentation included with the UVM release, consisting of a Class

mailto:john.aynsley@doulos.com

 2

Reference and a User Guide, is incomplete in some areas and leaves

many questions unanswered. This is exacerbated by the fact that

UVM still maintains a form of backward compatibility with its

ancestor methodologies, so the UVM codebase still includes code

from AVM and URM that is not necessarily maintained to the same

quality as the more widely used features. UVM offers “more than

one way to do it”, and there are areas in which the experts still debate

which is the best approach. There are sometimes alternative

approaches offered by the various ancestor methodologies between

which the user must choose. There are optional shortcuts (such as

text macros) which the experts still debate. There are new features

with an experimental flavor that are championed by some expert

users while being frowned upon by other expert users. To add fuel to

the fire, the web has created a forum in which experts, both real and

self-proclaimed, can propagate their advice to the wider community.

This advice is sometimes excellent, sometimes contradictory,

sometimes misguided, and sometimes just plain wrong. Having a

sandpit in which people can play with new ideas can be a very

positive thing, but at the same time it can be hard and time-

consuming to sort the wheat from the chaff in the absence of a

definitive methodology. Several pundits have observed that UVM is

still in need of a “methodology”, in the sense of a definitive set of

rules and guidelines directing its use.

2. INTRODUCING EASIER UVM

It is three years since Doulos first presented a paper entitled Easier

UVM at DVCon. The goal of that first Easier UVM paper was to

identify a minimal set of concepts sufficient for constrained random

coverage-driven verification in order to ease the learning experience

for engineers coming from a hardware design background. The first

paper was explicitly aimed at mainstream Verilog and VHDL users,

not verification experts. A lot of UVM marketing material and

workshops were then (and still are) aimed at early adopters and

verification experts, and as such have their place, but it is Doulos'

direct experience that many new UVM users do not consider

themselves experts and need some help getting started. The goal of

Easier UVM "version 1" was primarily educational and pedagogical,

that is, to reduce UVM to a set of simple concepts and coding idioms

that are relatively easy to learn. Practically speaking, Easier UVM

was a subset of UVM, but was not meant to exclude any features of

UVM, just give a good starting point for learning: other features of

UVM could always be introduced as the user became more

confident. It was always recognized that, despite the title, learning

UVM is still not easy.

Since that time there has been a very rapid adoption of UVM across

the industry, and the experience gained from training and consulting

with many users over that period gives us the confidence to propose

a more prescriptive set of UVM coding guidelines complemented by

a UVM code generation tool.

This second paper on Easier UVM introduces a set of specific coding

guidelines that suggest “one way to do it”, helping to give new users

clear direction regarding best practice, and an automatic code

generation tool that can generate the first tier of the UVM codebase

for a new project, generating the basic UVM structures starting from

a simple template. This offers a number of specific benefits, as

follows.

 Easier UVM can help individuals and teams to get started

with UVM, reinforce what they learned during training,

learn best practice, and avoid the most common pitfalls.

 Easier UVM can help individuals and teams to become

productive with UVM more quickly. In practical use on

industrial projects, one of us (Suehnel) has found the use of

the code generator to cut around 6 weeks from the coding

effort at the start of the project

 Easier UVM helps teams to use UVM in a more consistent

way across and between projects within a company, and

thus to reduce the burden of supporting the UVM codebase

over time.

 Easier UVM helps make the planning and execution of

UVM projects a more predictable process and can help

keep even the first project on schedule.

The net effects are to accelerate the timescales of the first project on

which UVM is adopted and to reduce the costs of maintaining a

UVM codebase over time.

There is also a human element to this which should not be

underestimated. By helping to avoid some of the basic pitfalls of

SystemVerilog and UVM and by getting a simple working test bench

up-and-running within a few days, project teams are encouraged and

motivated to persevere with UVM where otherwise they might give

up in frustration. On real projects the provision of a code generator

has been found to make a dramatic difference in overcoming the

resistance to change.

The Easier UVM guidelines document itself is too long to be

embedded directly in this paper, but the guidelines and code

generator can be downloaded, used, and modified free-of-charge [1].

3. CODING GUIDELINES

This paper describes our experiences with a specific set of coding

guidelines and an associated code generator, but the intent of this

paper is not to advocate the adoption of any one specific guideline

over any other. We have found that any individual guideline will

have its advocates and its detractors: company-specific coding

guidelines usually end up being unique because opinions as to best

practice can be subjective and differ substantially according to

experience. If this paper encourages the UVM community to think

about and eventually converge on any set (or sets) of coding

guidelines, it will have fulfilled its objective.

That said, the Easier UVM coding guidelines address the following

areas:

 Lexical Guidelines and Naming Conventions

 General Guidelines

 General Code Structure

 Clocks, timing and synchronization

 Transactions

 Sequences

 Objections

 Components

 Connection to the DUT

 TLM Connections

 Configurations

 The Factory

 Tests

 Messaging

 Functional Coverage

 The Register Layer

 Agent Data Structure and Packaging

 3

Most of the guidelines could be regarded as common sense: there is

nothing revolutionary. However, the guidelines document is a lot

more prescriptive than either the official UVM Class Reference or

the UVM User Guide: this document gives very specific

recommendations about which UVM features to use and exactly how

to use them. In some cases, this meant recommending best practice

as commonly agreed upon across the industry. In other cases it meant

making a rather arbitrary choice to favor one way of doing things

rather than another. In most cases it was felt more useful to provide

clear direction to do things in a certain way rather than to present

alternatives along with a rationale for choosing between them,

although there are still a few cases where we felt obliged to present

users with a choice. In any case, Easier UVM is not meant to exclude

any part of the SystemVerilog or UVM standards: the Easier UVM

guidelines are offered as a suggestion of best practice, and users are

free to take them, leave them, or modify them for their own

purposes.

3.1. Coding Patterns

The Easier UVM coding guidelines start by defining coding patterns

for the most common user-defined UVM classes, including obvious

things such as the order of declarations, specific naming conventions,

which macros to use, and which methods to override. To give an

idea, here are the outlines of the three main coding patterns for

components, transactions, and sequences:

Components

class my_comp extends uvm_component;

 `uvm_component_utils(my_comp)

 // Transaction-level ports and exports

 // Virtual interfaces named vif or *_vif

 // Internal data members named m_*

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 function void build_phase(...);

 ...

 // Other standard phase methods

endclass

Transactions

class my_tx extends uvm_sequence_item;

 `uvm_object_utils(my_tx)

 // Data members named m_*

 function new (string name = "");

 super.new(name);

 endfunction

 function string convert2string;

 ...

 function void do_copy(uvm_object rhs);

 ...

 // Other overridden methods

endclass

Sequences

class my_seq extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_seq)

 // Data members named m_* acting as control knobs

 function new(string name = "");

 super.new(name);

 endfunction

 task body;

 ...

endclass

The guidelines also prescribe coding patterns to deal with specific

situations, for example how to use configuration objects, how to

configure sequences through the configuration database, how to start

regular sequences from virtual sequences, and how to prolong run-

time phases until all components have finished. The set of coding

patterns is not exhaustive, and some of the guidelines will inevitably

be contentious, but it was felt that offering some concrete advice was

better than offering no advice.

An example of a very specific but very arbitrary choice is that

concerning naming conventions. We recommend specific prefixes

and suffixes to be used when naming class members (m_), ports

(_port), virtual interfaces (_vif) and so forth. There is nothing right

or wrong about the particular conventions chosen, except insofar as

they are in general consistent with the conventions used within the

UVM base class library itself, but there is clear benefit to be gained

from adopting some naming convention. A company could

conceivably replace these conventions with their own while

otherwise adhering to some or all of the Easier UVM guidelines.

As another example of an arbitrary choice, on the contentious issue

of whether or not to allow the use field macros, the Easier UVM

guidelines advise against the use of field macros in general and give

specific guidelines, with examples, concerning how to override built-

in methods such as do_copy, do_compare, do_print and so forth. The

code generator is able to generate the code for these methods

automatically, thus counteracting one of the potential disadvantages

of choosing not to use field macros. The arguments against the use of

field macros include the compile-time and run-time overhead

introduced by the code generated by these macros and the difficulty

many users have experienced trying to understand and debug the

field macros. On the other hand, many users do use field macros

successfully, and recognizing that there may be situations where the

field macros do get used, the Easier UVM guidelines suggest a way

to highlight whether or not field macros are being used, namely:

 When not using field macros (recommended), register the

class with the factory using one of the macros

`uvm_component_utils or `uvm_object_utils as the first

line within the class.

 If using field macros (not recommended), register the class

and the fields using one of the macros

`uvm_component_utils_begin or `uvm_object_utils_begin

immediately after the declaration of any member variables.

As another example of an arbitrary choice, we have chosen to

recommend overriding the callbacks pre_start and post_start rather

than pre_body and post_body when wanting to execute code before

or after the execution of the body task of a sequence. There is some

justification for this decision in that the pre/post_body methods are

not called when a sequence is started using a macro from the

`uvm_do family, whereas pre/post_start are called however the

sequence is started.

 4

An example of a coding guideline that encourages good coding style

is to always call the randomize method of a sequence object before

starting the sequence on a sequencer, whether or not the sequence

class explicitly named at that point in the source code contains any

rand variables. The justification for this guideline is that the type of

the sequence object could be replaced at run-time using a factory

override, and the extended class with which the sequence is replaced

could contain rand variables, even if the base class did not. If the

sequence object is not randomized before it is started, the rand

variables within the extended class would not get randomized.

3.2. General Guidelines

As well as specific conventions, the coding guidelines also offer

more general advice on the best way to structure the verification

environment and how to handle commonly encountered problems.

This goes beyond what might typically be found in company coding

standards and overlaps with the good practice that might be learned

during training. Hence the coding guidelines may help a project team

to reinforce what they learned during formal training.

At the highest level, the Easier UVM guidelines show how to

structure a UVM verification environment containing parallel agents

controlled by virtual sequences and sending out transactions to a

scoreboard for analysis, as illustrated in the figure below:

At a more detailed level, the general guidelines include common

good practice such as:

 separation of tests from the verification environment

 developing verification components and tests with reuse in

mind

 use of the factory and the configuration database

 use of transaction-level ports and exports

 use of virtual interfaces

 use of run-time phases

 use of virtual sequences and scoreboards in the presence of

multiple parallel agents

 proper use of message ID and verbosity in user-defined

reports

 use of the register layer

 advice on functional coverage

 advice on packaging data and structuring files for reuse

As an example, consider the use of the configuration database. The

Easier UVM guidelines recommend that where a component has

multiple configuration parameters, those parameters should be

grouped together into a configuration object that gets stored in the

configuration database and is associated with that component

instance. Typically, each component instance would be associated

with a unique configuration object, but it is also allowable that a

component instance has no configuration object or, where

appropriate, that several component instances share the same

configuration object. A component may set configuration objects for

its children, grandchildren and so forth, thus skipping generations

down the hierarchy, but a component is only allowed to read its own

configuration object, not the configuration object of its parent or

grandparent. By this rule, the configuration of a component is only

dependent on parameters contained within its own configuration

object, and hidden dependencies on configuration information

contained outside the immediate context of the component are

forbidden.

The coding guidelines address the issue of how to return transactions

from the driver in response to requests from the sequencer, where

there are three common approaches:

 returning a separate response object from the driver to the

sequencer by having the driver call the get method

 allowing the driver to modify one or more members of the

request object itself rather than returning a separate

response object

 not returning a response from the driver, but instead using

transactions sent from the analysis port of the monitor

component in the same agent

The coding guidelines explain the main approaches to layering

sequencers and agents when building verification environments for

layered protocols and when reusing agents in a layered fashion.

The coding guidelines contain examples which complement the

application-specific code from the code generator. Guidelines and

examples are important because the automatically generated code is

only a starting point for writing application-specific verification

environments. Having automatically generated code can nonetheless

be important as part of the learning process, as well as an aid to

productivity.

4. CODE GENERATION

The code generator itself is written in Perl and is freely available for

download under an Apache 2.0 license. It generates SystemVerilog

code that conforms to the Easier UVM guidelines, but because it is

open source it can be modified if necessary to generate code

according to the guidelines used on specific projects.

The code generator was originally based on the juvb11.pl contributed

to the OVM-World by Mc Grath of Cadence [8]. Juvb11.pl was

intended to generate an OVM framework for one single VIP only,

i.e. no testbench was generated. The current script consists of about

3000 lines of Perl code and has been extended to generate a complete

UVM verification environment including multiple UVM agents, the

register model, and virtual sequences.

The code generator creates all the boilerplate code necessary to

extend UVM classes such as drivers, monitors and agents,

customized with application-specific information such as transaction

fields and TLM port names. The application-specific information is

 5

drawn from a simple template fed into the Perl script. The code

generator also creates placeholders where the user should insert their

own application-specific code, and examples of top-level classes and

modules that will be replaced by user-defined code.

The code generator creates the following set of files for any given

DUT interface, where <name> is a prefix that designates the

interface:

<name>.svh List of `includes, one-per-class

<name>_agent.sv UVM agent

<name>_common.sv Placeholder for shared declarations

<name>_config.sv Configuration class

<name>_coverage.sv Subscriber with placeholder for covergroup

<name>_driver.sv UVM driver with placeholder for pin wiggling

<name>_env.sv UVM env that instantiates agent

<name>_if.sv SystemVerilog interface

<name>_monitor.sv UVM monitor with placeholder

<name>_pkg.sv SystemVerilog package

<name>_seq_item.sv UVM transaction with overridden methods

<name>_seq_lib.sv Example sequences

<name>_sequencer.sv UVM sequencer

Having a standard, uniform file structure and a uniform way to

organize the various elements (agent, interface, package, sequence

…) was found to help to maintain consistency across a team or

company.

The user provides the code generator with a setup file that defines the

contents of each DUT interface and each sequence item. From this,

the code generator creates the following classes for each DUT

interface:

 Sequence item (transaction)

 Sequencer

 Driver

 Monitor

 Agent

 Configuration (one per agent)

 Subscriber (for coverage collection)

 Sequence (simple sequence to run one transaction)

 Package (that includes the above classes)

 Interface (pin-level)

At the top level, the code generator also creates:

 Top-level module, which instantiates the interfaces

 Env, which instantiates

o Agents

o Configuration objects

o Scoreboard (empty)

o Register model (register layer)

 Test, which runs a virtual sequence to start one simple

sequence per agent.

The top-level module and classes can be run out-of-the-box as an

example that exercises the entire UVM verification environment

down to the level of the drivers, which are initially just empty

dummy implementations. Having a verification environment that

could be simulated immediately was found to be of great value in

overcoming peoples' skepticism toward adopting UVM for the first

time on a project.

Having the boilerplate code generated automatically saves the effort

of having to type the tedious things over and over again, provides a

set of examples that are customized with user-defined interface, port

and field names specific to the protocols being used, and ensure a

level of consistency throughout the foundation on which the

codebase is built.

This example shows boilerplate code from the code generator,

including some user-defined class properties fed as input to the code

generator:

`ifndef SPI_SEQ_ITEM_SV

`define SPI_SEQ_ITEM_SV

class spi_seq_item extends uvm_sequence_item;

`uvm_object_utils(spi_seq_item)

// class properties

rand logic [127:0] data;

rand bit [6:0] no_bits;

rand bit RX_NEG;

extern function new(string name="spi_seq_item");

extern function void do_copy(uvm_object rhs);

extern function bit do_compare(uvm_object rhs, uvm_comparer

comparer);

extern function string convert2string();

extern function void do_print(uvm_printer printer);

extern function void do_record(uvm_recorder recorder);

endclass : spi_seq_item

This example shows placeholders where user-defined code would

need to be inserted:

task spi_driver::run_phase(uvm_phase phase);

 // add additional declarations here

 super.run_phase(phase);

 `uvm_info(get_type_name(),"run_phase",UVM_MEDIUM)

 // set signals on reset values here

 @(posedge vif.reset) // reset goes inactive

 forever begin

 seq_item_port.get_next_item(req);

 @(posedge vif.clk)

 `uvm_info(get_type_name(), {"req item\n",req.sprint},

UVM_MEDIUM)

 // insert the driver protocol here

 $cast(rsp, req.clone());

 // adopt the rsp

 seq_item_port.item_done();

 end

endtask : run_phase

 6

The current version of the open-source code generator does not

provide the ability to regenerate the code without disturbing any

user-defined code inserted at the placeholders: any modifications

would get lost if the code were regenerated. The intent is run the

code generator just once and use the output from the code generator

to create the initial framework for the user-defined code, but not to

regenerate the code thereafter.

This is an example of the setup file that introduces the user-defined

names to be inserted into the boilerplate code from the generator:

uvc template

 # indented comment

comment lines start with #

comment lines and whitespace (blank lines) ignored

"|" vertical bar is the field separator

#uvc_name| name of uvc (i.e. ahb_master)

uvc_Name| spi

#uvc_item| name of item (i.e mstr_pkt)

 uvc_item | spi_seq_item

#uvc_var | list of seq_item variables

uvc_var | rand logic [127:0] data;

uvc_var | rand bit [6:0] no_bits;

uvc_var | rand bit RX_NEG;

#uvc_if | name ofinterface (i.e. mstr_if)

uvc_if | spi_if

#list_of_ports: (port list for interface)

uvc_port | logic clk;

uvc_port | logic reset;

uvc_port | logic [`SPI_SS_NB-1:0] ss_pad_o;

uvc_port | logic sclk_pad_o;

uvc_port | logic mosi_pad_o;

uvc_port | logic miso_pad_i;

#list_of_clocks: (clock list for interface)

uvc_clock | clk

#list_of_reset: (reset list for interface)

uvc_reset | reset

4.1. Practical experience with code generation

In discussing the issue of UVM code generation, the question often

arises as to whether it is possible to use one-and-the-same UVM

architecture across multiple projects, the counter argument being that

every project is unique and demands a bespoke verification

environment. In our experience, there are indeed certain common

denominators across most projects that permit automatic code

generation, and furthermore, having all UVM environments based on

a uniform and flexible architecture enables verification effort to be

focussed on the differences between projects, where it should matter

the most. For example, all projects should use one agent per DUT

interface, and the code for each agent should be organised in a

uniform manner. The automatic code generator achieves this.

For a typical project, code generation might proceed as follows.

1. Hold a kick-off meeting to identify the top-level DUT and

enumerate all of its functional interfaces. It is important to

identify the functional interfaces up-front to reduce

iterations.

2. Create setup files that name the pins and transaction

variables for each DUT interface

3. Generate the code for the complete environment.

4. Simulate the complete environment (drivers, monitors, and

scoreboards would still be dummies at this stage). This is

important in helping beginners and their managers to learn

where to start when working with an unfamiliar language

and methodology. The automatically generated

environment contains a virtual sequence that runs a

transaction through each agent, and thus exercises the

entire environment down to the level of the drivers.

5. Start implementing the drivers one-by-one.

6. Simulate each driver in turn by adding new sequences and

tests to the environment, while many parts of the

environment are still missing. This helps to demonstrate

that progress is being made.

7. Implement monitors, subscribers, scoreboards, and add

further sequences and tests.

8. As the tests increase in sophistication, add further data

members to the sequence items and refined the methods as

needed.

There is clear value in generating the verification environment for

the first clean-sheet project, and automation helps to ensure

completeness and consistency of verification environments across

the company even when the users have become more experienced

with UVM.

For derivative projects, if the functional interfaces of the DUT have

not changed, it may be sufficient just to add further tests and

sequences. On the other hand, if there are new or modified functional

interfaces, our recommendation would be to regenerate the entire

verification environment and to replace automatically generated

dummy code with code created by hand from the previous project,

where appropriate. Because the file structure is unchanged, it is

straightforward to replace the newly generated code with the original

code. Effort must be spent analyzing any new interface signals and

making any necessary updates to the existing implementations. This

approach ensures that all of the elements are created, connected, and

configured correctly at the top level.

The goal is to generate each verification environment once and once

only. In a few cases we found it necessary to make a second pass at

code generation and to replace automatically generated parts with

parts previously modified by hand, as described in the previous

paragraph. This was caused by a failure to identify all the necessary

functional interfaces up-front during the kick-off meeting, usually

because of some oversight or a late change to the specification.

In practice, automatic code generation was not always

straightforward. Each project may contain specific details that do not

fit well with an automatically generated environment, or that require

significant extensions to the environment. One example might be the

handling of interrupts, where a single interrupt pin may need to affect

the behavior of several functional interfaces. In that particular case,

you have to decide whether to duplicate the interrupt pin across the

interfaces, whether to create a separate interrupt interface manually,

 7

or whether to implement horizontal communication between the

agents.

Although this paper has focussed on automatic code generation, a

considerable part of any verification environment will need to be

written by hand. For example, the current code generator does not

create the internal structure of scoreboards, nor does it handle

layered agents. Even using a code generator, people can still make

mistakes, and use of a code generator will not necessarily guarantee

compliance with specific project constraints.

5. CONCLUSION

We have witnessed a lot of enthusiasm from users regarding the

availability of a set of specific coding guidelines concerning best

practice for UVM code. It remains to be seen whether the Easier

UVM coding guidelines and code generator will be widely adopted,

but in any case we remain convinced of the necessity for some such

set of guidelines over-and-above the UVM class library itself and the

accompanying documentation.

6. REFERENCES

[1] The Easier UVM guidelines and code generator
http://www.doulos.com/knowhow/sysverilog/uvm/

[2] IEEE Std 1800-2012 "IEEE Standard for System Verilog-Unified

Hardware Design, Specification, and Verification Language"

[3] Universal Verification Methodology (UVM) 1.1d Class Reference,

updated March 7, 2013

[4] Universal Verification Methodology (UVM) 1.1 User’s Guide, May 18,
2011

[5] On-line resources from

http://www.accellera.org/downloads/standards/uvm

[6] On-line resources from http://www.accellera.org/community/uvm/

[7] On-line resources from

https://verificationacademy.com/

[8] Updated juvb template generator for UVM-1.1:

http://forums.accellera.org/files/file/82-updated-juvb-template-generator-for-

uvm-11/

http://www.doulos.com/knowhow/sysverilog/uvm/
http://www.accellera.org/downloads/standards/uvm
http://www.accellera.org/community/uvm/
https://verificationacademy.com/
http://forums.accellera.org/files/file/82-updated-juvb-template-generator-for-uvm-11/
http://forums.accellera.org/files/file/82-updated-juvb-template-generator-for-uvm-11/

