

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 1

The Easier UVM Coding Guidelines

Version 2016-06-24

This document is a printable version of the Easier UVM Coding Guidelines from Doulos. You are free to
use these guidelines directly, to merge them into your own company-specific UVM coding guidelines, or
merely to borrow some of the ideas. If you reuse a substantial portion of these guidelines, you are
requested to acknowledge the source as being the Doulos Easier UVM Coding Guidelines.

The information in this document is provided “as is” without warranty of any kind.

These coding guidelines are offered by Doulos for the benefit of the UVM community. They are not
officially endorsed by Accellera.

The Easier UVM Coding Guidelines have an associated Easier UVM Code Generator available under the
Apache 2.0 license. You can find the latest versions of both, together with detailed documentation and
video tutorials, at:

www.doulos.com/easier

http://www.doulos.com/easier

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 2

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 3

Contents

The Easier UVM Coding Guidelines .. 1

Abbreviations .. 4

Introduction, Principles, and Goals ... 5

The Structure of a UVM Verification Environment ... 7

Lexical Guidelines and Naming Conventions .. 9

General Guidelines .. 13

General Code Structure .. 14

Clocks, Timing, Synchronization, and Interfaces ... 20

Split Transactors for Emulation/Acceleration ... 25

Transactions .. 28

Sequences ... 33

Stimulus and Phasing .. 40

Objections ... 44

Components .. 47

Connection to the DUT ... 51

TLM Connections .. 53

Configurations [UPDATED] .. 55

The Factory ... 64

Tests .. 66

Messaging ... 68

Register Layer .. 70

Functional Coverage ... 76

Web Links .. 82

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 4

Abbreviations

API – Application Programming Interface

BFM – Bus-Functional Model

DUT – Design Under Test

OOP – Object-Oriented Programming

OVM – Open Verification Methodology (a predecessor of UVM)

TLM – Transaction Level Modeling (or Transaction Level Model)

UVM – Universal Verification Methodology

VIP – Verification Intellectual Property

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 5

Introduction, Principles, and Goals

Easier UVM is a set of vendor-neutral coding guidelines accompanied by a code generator that creates

UVM code compliant to those guidelines. Easier UVM was created to help individuals and project teams

learn and then become productive with UVM as quickly as possible and to reduce the burden of

supporting UVM code within a company or organization.

SystemVerilog is a very large and complex language, and the UVM is a large and complex base class

library. This poses a challenge for adopters, because there are often many ways to do the same thing. By

choosing a particular approach users may find themselves in a pitfall, straying from industry best

practice, or creating non-interoperable code. UVM itself exists in part to address this issue by providing

a standard base class library for building class-based verification environments. But UVM gives you

several ways to do the same thing, partly because of the need for backward compatibility with legacy

methodologies. Backward compatibility is itself a good thing, but having too much choice can be a bad

thing while you are still learning a complex methodology, and having a variety of coding styles can

increase the burden of maintaining and supporting a UVM code base. Easier UVM was specifically

created to address this issue by recommending one way to do it.

In devising the Easier UVM coding guidelines, we have had to make specific choices as to how to do

things. The guidelines are more prescriptive than either the official UVM Class Reference or the UVM

User Guide: this document gives some very specific recommendations about which UVM features to use

and exactly how to use them. In some cases, we have been able to recommend best practice as

commonly agreed upon across the industry. In other cases we have had to make a rather arbitrary

choice to favor one way of doing things rather than another. It was generally felt more useful to provide

clear guidance rather than to present alternatives, but that is not to say that alternative approaches

would not be equally valid. In a few cases we have added a side-note to point out alternative

approaches and to explain the rationale for the approach taken.

By reducing the number of coding patterns, by recommending specific coding conventions, and by

automatically generating the initial framework for the verification environment, Easier UVM makes it

easier to create a code base of maintainable and reusable UVM code. Easier UVM summarizes best

practice based on experience in industrial projects. In some cases Easier UVM has been shown to save

something like 6 weeks coding effort at the start of a project (depending on the details of the project),

to help avoid pitfalls, to make code more reusable, and to help unify the way UVM is used across a

company. Because the Easier UVM code generator itself is available under an open source license, you

are even free to modify the code generator for your own purposes.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 6

Easier UVM is meant to be taken as a set of coding guidelines or biases. Easier UVM alone will not

address every issue you are going to face as you build a complex verification environment, and for that

reason, every rule in Easier UVM can have exceptions. While all the code produced from the Easier UVM

code generator is compliant to the guidelines, you can choose to follow the Easier UVM coding

guidelines exactly or you are free to bend or adapt the guidelines to suit your own requirements.

Because of this, we have not tried to distinguish between hard rules and soft guidelines in the list of

guidelines. The SystemVerilog language and UVM itself are the standards.

A lot of the code that you will add to the basic framework produced by the code generator will be

project-specific. For example, scoreboards can often become highly complex, application-specific, and

hard-to-write, in some cases dwarfing the boilerplate code. Although Easier UVM is designed to make

things easier, SystemVerilog and UVM are still very challenging to learn and use, so please do not think

that Easier UVM will remove the need to attend a formal training class or reduce the need to spend time

on self-study. You still need to have a solid understanding of what you are doing, but once you have

completed your formal training, Easier UVM will give you a way to apply that knowledge as you start

working on your first real project.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 7

The Structure of a UVM Verification Environment

UVM is a methodology for building class-based verification environments in SystemVerilog, taking

advantage of object-oriented programming techniques to help with code reuse. Reuse is right at the

heart of UVM: if you are not planning to reuse verification code right from the start, then you may have

missed the point of UVM.

The building blocks of a UVM verification environment are objects, that is, instances of classes, as

opposed to the modules, processes, and functions familiar to Verilog or VHDL users. The significance of

using objects is that they can be replaced at run-time, giving a huge amount of flexibility when it comes

to reusing verification components and tests without tampering with the original source code. You can

take an existing VIP (an item of Verification Intellectual Property) and replace subcomponents, alter the

sequence of transactions it generates, or extend its behavior without touching (or copying) the source

code and without the original author of the VIP having needed to anticipate your changes in any way

other than having followed good coding guidelines. This is achieved using some OOP (Object-Oriented

Programming) tricks.

Easier UVM recognizes three main types of user-defined object, plus a few other less important ones.

The three main object types are the component, the sequence item, and the sequence (where the

corresponding classes are uvm_component, uvm_sequence_item, and uvm_sequence, respectively),

while the less important ones include configuration and callback objects. Components are structural,

that is, they are instantiated at the start of simulation (strictly speaking, during the build phase),

whereas sequence items and sequences usually represent test stimulus and are dynamic, that is, they

are instantiated on-the-fly at run time. As long as the coding guidelines are followed, any of these

objects can be replaced with modified or extended versions at the time they are created.

Easier UVM defines coding templates for the component, sequence item and sequence. Each of these

coding templates is simple and regular, and the three kinds of template are mutually consistent

wherever possible. There are coding guidelines for the way the lines are ordered within each class and

naming conventions for user-defined names, all of which makes your code look consistent and makes it

easier for other people to find their way around.

Each of these three kinds of object is instantiated by making a call to a factory method, which allows the

original object to be substituted with a replacement in a way that need not have been anticipated by the

original author. Using the UVM factory consistently in this way is one of the keys to being able to exploit

OOP in UVM.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 8

Each component instance can have an associated configuration object, which contains configuration

information (i.e. parameters) specific to that component instance. Configuration objects (and other

configuration information) are inserted into the configuration database in a top-down fashion, typically

from the test or an environment, and are then accessible to components lower in the hierarchy. This

configuration mechanism is very convenient in that a configuration object can be randomized (with in-

line constraints) using a single call, and very flexible in that the same configuration object can be

accessed from multiple components where appropriate.

Aside from using regularized coding templates, the factory, and configuration, there are also the issues

of the overall organisation of the verification environment, connecting the verification environment to

the DUT, the generation of reusable stimulus, the collection of functional coverage information,

message reporting, and the end-of-test mechanism. Easier UVM provides specific guidelines in each of

these areas.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 9

Lexical Guidelines and Naming Conventions

☐ Have only one declaration or statement per line.

As well as helping with readability, the helps ensure the smooth operation of any tools that need to
make reference to the source code, such as the annotation of compiler error messages or code coverage
information and source code debug. Having declarations on separate lines makes commenting easier.
Having a comma-separated list of related names in a declaration may be okay, but including variable
initializations in a comma-separated list should be avoided.

☐ When creating user-defined names for SystemVerilog variables and classes, use lower-case words
separated by underscores (as opposed to camelBackStyle).

Although this convention is not critical, it does help to be consistent, and this recommendation is
consistent with the UVM base class library itself.

☐ When creating user-defined names for SystemVerilog enum literals, constants, and parameters, use
upper-case words separated by underscores.

Again this is not critical but is consistent with the UVM base class library.

☐ Restrict all user-defined UVM instance names (that is, strings such as component instance names) to
the character set a-z, A-Z, 0-9 and _ (underscore).

Keep in mind that the use of other punctuation characters or symbols may make names hard to
interpret in the context of software user interfaces or automatically generated reports. The characters $
and __ (double underscore) are notorious for breaking downstream tools.

☐ Use shorter names for local variables and longer, more descriptive names for global items such as
class names and package names.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 10

This is just good programming style.

☐ Use the prefix m_ before the names of user-defined class member variables (officially known as class
properties in SystemVerilog).

The motivation for the prefix m_ is to distinguish class member variables from function arguments and
local block scope variables when referenced from within the methods of a class, and to distinguish class
member variables from methods when referenced from outside the class. The prefix m_ is only used
with class member variables, not variables declared inside blocks or methods, because the scope of
block variables is anyway restricted to the block or method in which they are declared. Do not use the
prefix m_ with ports, exports, or virtual interfaces, which are anyway distinguished by having their own
naming conventions. There are also a number of special variables named in the UVM documentation
that do not have the m_ prefix, i.e. is_active, coverage_enable, checks_enable, and regmodel.

☐ Use the names m_sequencer, m_driver, and m_monitor as the instance names of the sequencer,
driver, and monitor respectively within every agent.

Fixed names are sufficient since each agent has exactly one sequencer, driver, and monitor.

☐ Use the suffixes _env and _agent after the instance names of every env and agent, respectively.

When there are multiple envs or agents instantiated at the same level, each will need to be given a
unique instance name, e.g. m_amba3_agent versus m_pcie_agent.

☐ Use the name m_config as the instance name of the configuration object within any component or
sequence that has one.

☐ Use the suffix _config after user-defined configuration class names.

When configuration objects are referenced from the configuration database, the configuration database
field name should be "config".

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 11

☐ Use the suffix _port after user-defined port names.

☐ Use the suffix _export after user-defined export names.

Port and export names do not need the prefix m_ since ports and exports are invariably class member
variables.

☐ Use the suffix _vif after user-defined virtual interface names.

If there is only one virtual interface in a component it is permissible to use the name vif rather than
adding _vif as a suffix to another name.

☐ Use the suffix _t after user-defined type definitions introduced using the keyword typedef.

A forward typedef to a class is an exception, because it will always refer to the class name. The
motivation for the suffix _t is to distinguish typedefs from class names when the name is used to define
variables or function arguments within a class (it tells you where to start looking for the type definition)
and to distinguish typedefs from class member variables and methods when accessed from outside the
class. Do not add the suffix _t to class names. It is usually possible to distinguish UVM class names from
other names in the context in which they are typically used, e.g. my_agent m_agent, where the prefix
m_ distinguishes the variable name from the type name

☐ Use the suffix _pkg after user-defined package names.

See Example.

☐ Write comments wherever they add value to the source code and help the reader to understand the
purpose of the code.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 12

Do not write comments that merely repeat the code itself or are otherwise unnecessary, because
unnecessary comments will increase the cost of maintaining the code.

☐ Include white space (blank lines, indentation) wherever it helps to make the code more readable.

Code with little or no white space can be difficult to scan.

☐ When overriding built-in UVM virtual methods, do not insert the virtual keyword at the start of the
overridden method definition.

Doing so has no effect on the semantics but clutters the text. This refers in particular to the UVM
common phase and UVM runtime phase methods (build_phase etc) and the user-definable hooks of
uvm_object (do_copy etc).

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 13

General Guidelines

☐ Do not use any features of UVM that are specifically marked as deprecated in the UVM Class
Reference or base class library.

☐ Do not use internal features of the UVM base class library code that are not documented in the UVM
Class Reference.

The UVM Class Reference is the definitive standard, not the source code. For example, do not refer to
any variables declared in the UVM class library that have the m_ prefix, because these variables are not
part of the standard.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 14

General Code Structure

☐ In structuring and coding the verification environment, think primarily about reuse.

One of the primary purposes of UVM is to make verification components, verification environments, and
test stimulus reusable, so always think about the separation of concerns. Avoid introducing any
dependencies that would impede subsequent reuse. Every agent should be written with reuse in mind,
such that it can be instantiated in any verification environment with minimal constraints.

☐ Use a consistent file structure and a consistent file naming convention throughout.

Most files should contain a single module, interface, package, or class, in which case the file name
should match the name of the item defined in the file and should have the file name extension .sv. (See
the Code Generator).

☐ Each class should be defined within a package (as opposed to defining classes within modules or at
file scope).

You can have more than one package, and more than one class within each package. The same class
name can be used in more than one package, in which case each occurrence would define a distinct
class.

☐ Use `include directives within a package to allow each class to be placed in a separate file

as opposed to having all the classes in one very large package file.

☐ Use conditional compilation guards to avoid compiling the same include file more than once.

Example

`ifndef BUS_PKG_SV

`define BUS_PKG_SV

...

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 15

`endif // BUS_PKG_SV

☐ Do not use wildcard import at compilation unit scope.

That is, do not write import declarations such as import my_package::*; outside of any module or
package, because doing so would make any imported names visible across all modules and packages in
the file, thus defeating the purpose of using packages to restrict the scope of names. This advice applies
to all import declarations at compilation unit scope, not just wildcard imports, but wildcard imports are
the most damaging.

☐ Include uvm_macros.svh and import uvm_pkg::* inside each package or module that refers to the
UVM base class library

as opposed to including/importing names at file scope.

Example

`ifndef BUS_PKG_SV

`define BUS_PKG_SV

package bus_pkg;

 `include "uvm_macros.svh"

 import uvm_pkg::*;

 `include "bus_tx.sv"

 `include "bus_config.sv"

 `include "bus_driver.sv"

 `include "bus_monitor.sv"

 `include "bus_sequencer.sv"

 `include "bus_agent.sv"

 `include "bus_coverage.sv"

 `include "bus_seq_lib.sv"

endpackage

`endif // BUS_PKG_SV

☐ Use one agent per interface, with a passive monitor and optional sequencer and driver whose

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 16

existence is determined by the value of the get_is_active method of class uvm_agent.

Since a DUT will typically have multiple interfaces, this implies having multiple UVM agents organised as
a parallel structure. (For a discussion and example of get_is_active, see Configurations.)

Figure: The organisation of the verification environment

☐ An agent should not instantiate components other than the canonical agent structure of one
sequencer, one driver, and one monitor.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 17

An agent could instantiate further components where demanded by the application, but this should be
avoided in general. Each agent will typically have an associated configuration object, but that object
should be instantiated by an enclosing env, not by the agent itself (see Configurations).

In the case that the DUT has multiple similar interfaces (for example, multiple ports on a network
router) multiple instances of the same agent may be grouped together within another UVM component
to form a component hierarchy. A nested hierarchy of verification environments may arise as
verification environments are reused from the block level to the system level.

☐ Use virtual sequences to co-ordinate the stimulus generation activities of multiple parallel agents

That is, use virtual sequences to start sequences on the sequencers belonging to multiple agents. Virtual
sequences may be reused between tests, which is a useful mechanism for stimulus reuse. Avoid using
the "default_sequence" configuration parameter as a way to start sequences. In general, you should
start a sequence by calling its start method. uvm-1.2 recommends using the class
uvm_sequence_library if you want to start sequences at the beginning of a phase.

☐ Checking and functional coverage collection should be performed in checkers, scoreboards, coverage
collectors, and other ad hoc subscriber components that are instantiated external to any agent and
connected to the analysis port of the monitor.

In general, checking and functional coverage collection should not be performed in the agent itself,
which should remain protocol-specific but DUT-agnostic, and should not be performed in the sequence
that generates the stimulus. In some cases an agent can be made more reusable by getting certain of its
parameters from the configuration database. In any case the agent should only contain checking and
coverage collection code that is intrinsic to the protocol and would be reusable whenever the agent was
reused between tests or between verification environments. In order to maximize the reusability of an
agent, you should try to anticipate the configuration changes that may be necessary to support future
versions of an interface.

☐ In general, connect agents, checkers, scoreboards, and coverage collectors using analysis ports and
exports.

A monitor or agent should only send transactions to the rest of the verification environment using
outgoing analysis ports. A driver should be restricted to communicating with one sequencer and one

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 18

SystemVerilog interface and should not need analysis ports. A scoreboard can consolidate the output
from multiple parallel agents. Analysis ports reduce the coupling between components. In general, avoid
having direct object references between components. There are some places where a direct reference
to another component is acceptable, such as where a virtual sequence makes a direct reference to a
sequencer within an agent in order to start a child sequence.

☐ UVM envs should be written such that they can be used as top-level envs or reused as sub-envs in
other larger verification environments.

IP reuse leads to VIP reuse, so a UVM env from one project may be reused as a sub-component in the
next larger project, resulting in a hierarchy of UVM components including embedded agents,
scoreboards and other analysis components.

☐ Use factory overrides and/or the configuration database to adapt the behavior of repurposed UVM
components to the needs of a new verification environment.

Avoid modifying the re-purposed code itself. The configuration database should be used where the
parameterization requirements for a component can be anticipated in advance when the component is
first written and thus built into the component by getting parameters from the configuration database.
Factory overrides can be used to make unanticipated changes, but can be a blunt instrument since they
result in the wholesale replacement of objects or methods.

☐ A top-level module should set configuration parameters that are retrieved by the test, the test should
set parameters retrieved by the env, and the env should set parameters retrieved by lower-level envs or
agents.

In order to decouple tests from verification components for the sake of reusability, a top-level module
or test should not contain the hierarchical instance names of components that are embedded deep in
the verification environment, nor should a top-level module or test share configuration parameter
names with leaf-level UVM components. This is a judgement to be made according to the desired level
of reuse. For example, an agent should not get a virtual interface from the configuration database that
was set directly by the top-level module, because doing so would introduce a dependency between the
top-level module and the agent that may impede reuse. (See Configurations.)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 19

☐ Represent layered protocols by having multiple sequencers, each with their own transaction type.

Protocol layering may lead to the need to layer existing UVM agents. Create a layered structure of
agents where potentially different transaction types pass between each layer. Use factory overrides
and/or the configuration database to stub out existing unwanted code within each agent, and run new
protocol translation sequences or pass-through sequences on the sequencers within the agents to pass
transactions up and down the protocol stack. (See Layered Protocols and Layered Agents.)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 20

Clocks, Timing, Synchronization, and Interfaces

☐ Generate clocks and resets in a SystemVerilog module, never in the UVM class-based verification
environment and never in a SystemVerilog program.

Otherwise the SystemVerilog scheduler could give incorrect behavior.

☐ Use SystemVerilog modules in preference to SystemVerilog programs.

The role of the program in isolating the verification environment from SystemVerilog scheduling issues
in the DUT can be performed equally well by the clocking block. The only case a program might be
convenient is when dealing with asynchronous assertions.

☐ Use clocking blocks within a SystemVerilog interface in order to sense and drive a synchronous DUT
interface.

SystemVerilog clocking blocks should be used because they provide a good way to isolate the
verification environment from the gate-level timing and the uncertainties of the SystemVerilog
scheduler. Not using clocking blocks might be justified if the driving and sampling of DUT pins can be
synchronized adequately using procedural code, particularly if the DUT is modeled using straightforward
RTL code, and always provided that stimulus is generated from a SystemVerilog module and not a
program. (VHDL users sometimes manage without clocking blocks because they are accustomed to
taking a more disciplined approach to delta cycles anyway.) Also note that clocking blocks must be
bypassed when accessing asynchronous pins (see immediately below).

☐ Use modports to enforce the use of clocking blocks where those clocking blocks are accessed through
a virtual interface from the UVM verification environment.

modports can also enforce the use of clocking blocks in an interface where that interface is accessed
through an interface port.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 21

☐ Use modports that combine a clocking block with asynchronous signals in order to access an interface
that combines synchronous and asynchronous signals.

Clocking blocks cannot be used to sense and drive signals asynchronously, but combining asynchronous
signals with a clocking block in a modport provides a good way to highlight what is going on.

☐ In the verification environment, try where possible to confine synchronization to signals in the DUT
interface and explicit delays to drivers and monitors, with other UVM components being untimed.

The driver and monitor components should be synchronized to the DUT interface, which implies that
these components will need to wait on signal changes in the interface. Because of this, UVM
components or sequences that provide transactions to the driver should provide transaction-level ports
and exports that do not block the execution of the driver so that the driver is always able to react
immediately to signals in the DUT interface. (This applies whether making blocking or non-blocking
method calls - blocking method calls do not actually need to block!) Note that sequences may still be
blocking, but only in the sense that they block while waiting for the driver, not while waiting for external
events. Also note that while a sequence should not model time by suspending its own execution for a
given delay, a sequence may certainly model time by calculating delays and storing these delays in
transactions that are then passed to the driver.

☐ If a driver needs to insert variable delays within or between transactions when driving the pins of an
interface, this should be handled by storing delays in the transaction passed to the driver.

Putting the delays in the transaction allows the sequence to take control of the timing when generating
back-to-back transactions.

☐ A driver should pull transactions from a sequencer using the non-blocking try_* methods in order to
maximize reusability in the scenario where the author cannot know whether the sequence will block the
execution of the driver.

If a sequence, running on a sequencer, does block the flow of transactions to its driver (because the
sequence is waiting for some specific event elsewhere in the environment, for example), then calling the
blocking get/get_next_item from the driver might cause the driver to miss critical signals on the
interface.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 22

Example

class my_driver extends uvm_driver #(my_transaction);

 `uvm_component_utils(my_driver)

 virtual dut_if vif;

 ...

 task run_phase(uvm_phase phase);

 forever

 begin

 my_transaction tx = my_transaction::type_id::create("tx");

 seq_item_port.try_next_item(req);

 if (req != null)

 begin

 // Wiggle pins

 seq_item_port.item_done();

 @(posedge vif.clock);

 vif.en <= 1;

 vif.cmd <= req.m_cmd;

 vif.addr <= req.m_addr;

 vif.data <= req.m_data;

 end

 else

 begin

 // Insert an idle cycle

 @(posedge vif.clock);

 vif.en <= 0;

 vif.cmd <= 0;

 vif.addr <= 0;

 vif.data <= 0;

 end

 end

 endtask

endclass: my_driver

☐ A driver should only pull down transactions from the sequencer when it needs them.

Having a driver pull down a set of transactions from the sequencer in advance will deny the sequencer
immediate control over what happens next in the driver. It is better to for the driver to pull down
transactions just-in-time. Doing so allows the sequence to set or randomize the transaction members
using the current state of the verification environment.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 23

☐ Use the uvm_event or uvm_barrier for ad hoc synchronization between sequences and/or analysis
components such as scoreboards.

When synchronizing parallel processes, sequences, or transaction streams that are distributed across
multiple UVM components, UVM events or barriers may sometimes be a more convenient
communication mechanism than ports and exports. An example would be where a sequence that is
sending transactions to one DUT interface is waiting for a specific scenario to be observed on another
DUT interface. Another example would be where several sequences are to run in lock step with one
another but on different agents. The configuration database can be used to distribute the event or
barrier object to multiple components. Alternatively, the event pool and barrier pool classes make it
possible to manage multiple events or barriers without the need to instantiate and distribute the event
or barrier objects themselves, but you still have the challenge of making sure that components that
access the same event or barrier use the same key (string). If you use the configuration database to
distribute the keys then the advantage of using the pools is lost: you might was well use the
configuration database to distribute the event or barrier objects themselves (shown in the comment
below).

Example

class my_sequence1 extends uvm_sequence #(my_tx);

 ...

 task body;

 // Using a barrier pool to manage the barriers

 uvm_barrier_pool barrier_pool = uvm_barrier_pool::get_global_pool();

 uvm_barrier barrier;

 barrier = barrier_pool.get("my_barrier");

 // Alternative - distribute barrier objects themselves using the

configuration database

 // if (!uvm_config_db#(uvm_barrier)::get(p_sequencer, "", "barrier",

barrier))

 // `uvm_fatal(get_type_name(), "No barrier in config_db")

 barrier.set_threshold(2);

 repeat (m_count)

 begin

 barrier.wait_for();

 ...

class my_sequence2 extends uvm_sequence #(my_tx);

 ...

 task body;

 // Code to get barrier pool identical to my_sequence1 above

 ...

 barrier = barrier_pool.get("my_barrier"); // Same name as above

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 24

 // All sequences that access this barrier have to agree on the

barrier name

 repeat (m_count)

 begin

 barrier.wait_for();

 ...

class virtual_seq extends uvm_sequence;

 ...

 task body;

 my_sequence1 seq1;

 my_sequence2 seq2;

 ...

 fork

 seq1.start(...);

 seq2.start(...);

 join

 ...

☐ A monitor should not assign values to variables or wires in the SystemVerilog interface.

A monitor should passively watch an interface and from it create transactions, which it sends out
through an analysis port for further processing by DUT-specific (or subsystem-specific) components. A
monitor should always be written as a passive component and its execution should never be blocked by
another UVM component or sequence. Use SVA and coverage directives in interfaces for protocol
checking and coverage collection.

☐ Use concurrent assertions and cover property in interfaces for protocol checking and related
coverage collection.

Concurrent assertions are ideal for low-level protocol checking because of the power of the temporal
operators (sequences) in SVA, and interfaces are a good place to put those assertions because they help
ensure the integrity of signals passing through the interface. For the sake of reuse, any checking and
coverage written in the interface itself should be restricted to the low-level behavior of the interface as
opposed to DUT-specific behavior or end-to-end checking or coverage collection. Although it is possible
to put properties in packages and concurrent assertions in modules, it is effective to put both in the
interface since such assertions are typically quite simple in themselves and relate directly to the
behavior of the interface. With regard to property-based coverage, keep specification coverage separate
from implementation coverage, because specification coverage is more likely to be reusable. (See
Functional Coverage.)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 25

Split Transactors for Emulation/Acceleration

When running a UVM simulation on an accelerator or emulator box, the UVM test bench running on the
host computer can easily become a bottleneck because it is running much slower than the DUT. This
issue can be addressed by moving as much of the UVM test bench code as possible onto the accelerator
or emulator box in order to speed up simulation. This means splitting each transactor (UVM driver or
monitor) into two parts, a lightweight proxy or wrapper that continues to run on the host, and a
synthesizable part (BFM or Bus-Functional Model) that runs on the box and wiggles the pins of the DUT.

(See figure on next page.)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 26

Figure: Dual-Top Modules and Split Transactors

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 27

☐ For emulation/acceleration, have two top-level SystemVerilog modules, one module that runs on the

host computer and instantiates the UVM verification environment and a second module that is
synthesized and runs on the emulator or accelerator.

The SystemVerilog module on the emulator should instantiate the DUT, contain any code for clock and
reset generation, and contain the synthesizable parts of the transactors (BFMs).

☐ The UVM verification environment running on the host computer should be untimed. It should not
contain any delays or refer to any clocks. Any delays and clocks should be moved to the
emulator/accelerator.

Although the UVM environment running on the host should not contain explicit delays or clocks, UVM
processes within sequences and drivers may sometimes need to be synchronized with one another using
SystemVerilog events or blocking method calls. Care should be taken to ensure that the driver proxy is
always able to respond when it needs to (rather than being blocked waiting for an event somewhere in
the sequencer stack).

☐ Split each UVM driver and monitor into two parts, an untimed part that runs on the host and a
synthesizable part (BFM) that runs on the emulator/accelerator.

The supplier of the emulator/accelerator box and its supporting software tool flow may provide tools to
facilitate simple communication between the two part of each transactor or may impose limitations or
restrictions on how they are coded. For example, the proxy transactors on the host may be able to call
the methods of the synthesizable transactors on the box using nothing but a SystemVerilog virtual
interface. Alternatively, the user may need to write explicit DPI code to pass transactions back and forth.
Similarly, each tool vendor will impose different coding rules with regard to the synthesizability of
transactors. Check the details with your vendor.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 28

Transactions

☐ Create user-defined transaction classes by extending the class uvm_sequence_item

as opposed to extending class uvm_transaction, which cannot be used a sequence item.

☐ Try to minimize the number of distinct transaction classes.

Use the same transaction class for the driver and monitor of an agent. Maintaining multiple transaction
classes often requires more effort than maintaining a single class.

☐ Register the transaction class with the factory using the macro `uvm_object_utils as the first line
within the class.

The use of field macros is not recommended in these guidelines, but if you do use field macros, you
should register the transaction class immediately after the declaration of any member variables using
the macro `uvm_object_utils_begin.

☐ Do not use field macros.

It is certainly possible to use field macros successfully if you know what you are doing, but allowing the
use of field macros may not be the best choice for a company or project team trying to create and
maintain a high-quality codebase. The use of field macros has led some users to experience a compile-
time and run-time overhead, increased difficulty with debug, and has been the cause of obscure and
confusing behavior. If despite these recommendations you still want to go ahead and use field macros,
only do so if you are confident you have a thorough understanding of their behavior (some of which is
non-obvious).

☐ After the factory registration macro, declare any member variables (using the prefix m_ as a naming
convention).

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 29

☐ Use the rand qualifier in front of any class member variables that might need to be randomized, now
or in the future.

A transaction may include protocol variables and control knobs that would need to be randomized, but
also meta-data (e.g. information to help with debug) that you would not want randomized.

☐ After any member variables, define a constructor that includes a single string name argument with a
default value of the empty string, a call to super.new, and is otherwise empty.

The constructor should take the following form:

function new (string name = "");

 super.new(name);

endfunction

☐ After the constructor, always override the convert2string, do_copy, do_compare, do_print, and
do_record methods.

It is best to override all of these methods if you cannot anticipate how the transaction class might be
reused in the future, although it is possible to omit specific methods if they are not called.

☐ Consider overriding the do_pack and do_unpack methods.

It is advisable to override these methods for the sake of reusability. They would be called whenever a
transaction needs to be serialized, passed over the DPI, or treated as a packed vector in order to alias
certain fields. Also, do_pack would typically omit meta-data from the resultant bitstream.

☐ When overriding do_pack and do_unpack, use the packing and unpacking macros (e.g.
`uvm_pack_int) where they will simplify the code.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 30

The packing and unpacking macros expand to straightforward code very similar to what you might have
written anyway, but it might not always be possible to use them if the packing operation is unusually
complicated. (See example below.)

☐ When overriding do_record, use the recording macros (e.g. `uvm_record_attribute and
`uvm_record_field) where they will simplify the code.

Note that the implementation of transaction recording can be vendor-specific, so care must be taken to
make the code portable. (See example below.)

☐ When overriding the do_print, do_record, do_compare, and do_pack methods methods, do not
make use of the printer, recorder, comparer, and packer policy object arguments to those methods
within the body of the overridden method.

The policy object arguments do have their uses, but they are not necessary in most cases and they add
complexity to the code.

Example

class my_tx extends uvm_sequence_item;

 `uvm_object_utils(my_tx)

 typedef enum logic {R = 0, W = 1} cmd_t;

 rand cmd_t m_cmd; // Enum type for illustration

 rand int m_addr; // Integral field for illustration

 rand bit m_data[]; // Dynamic array for illustration

 constraint c_data { m_data.size == 8; }

 function new (string name = "");

 super.new(name);

 endfunction

 function string convert2string;

 string s;

 $sformat(s, "%s", super.convert2string());

 $sformat(s, " cmd=%b, addr=%0d, data=%p", m_cmd, m_addr, m_data);

 return s;

 endfunction

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 31

 function void do_copy(uvm_object rhs);

 my_tx tx;

 $cast(tx, rhs);

 super.do_copy(rhs);

 m_cmd = tx.m_cmd;

 m_addr = tx.m_addr;

 m_data = new[tx.m_data.size];

 foreach (tx.m_data[i])

 m_data[i] = tx.m_data[i];

 endfunction

 function bit do_compare(uvm_object rhs, uvm_comparer comparer);

 my_tx tx;

 bit status = 1;

 $cast(tx, rhs);

 status &= super.do_compare(rhs, comparer);

 status &= (m_cmd == tx.m_cmd);

 status &= (m_addr == tx.m_addr);

 foreach (tx.m_data[i])

 status &= (m_data[i] == tx.m_data[i]);

 return status;

 endfunction

 function void do_print(uvm_printer printer);

 if (printer.knobs.sprint == 0)

 `uvm_info(get_type_name(), convert2string(), UVM_MEDIUM)

 else

 printer.m_string = convert2string();

 endfunction

 function void do_record(uvm_recorder recorder);

 super.do_record(recorder);

 `uvm_record_field("cmd", m_cmd) // Confined to integral fields

 `uvm_record_field("addr", m_addr)

 foreach (m_data[i])

 `uvm_record_field($sformatf("data%0d",i), m_data[i])

 endfunction

 function void do_pack(uvm_packer packer);

 super.do_pack(packer);

 `uvm_pack_enum(m_cmd)

 `uvm_pack_int(m_addr)

 foreach (m_data[i])

 `uvm_pack_int(m_data[i]) // `uvm_pack_array needs

packer.use_metadata==1

 endfunction

 function void do_unpack(uvm_packer packer);

 super.do_unpack(packer);

 `uvm_unpack_enum(m_cmd, cmd_t)

 `uvm_unpack_int(m_addr)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 32

 m_data = new[8];

 foreach (m_data[i])

 `uvm_unpack_int(m_data[i]) //`uvm_unpack_array needs

packer.use_metadata==1

 endfunction

endclass

☐ Always instantiate transaction objects using the factory.

Instantiations should take the form:

 var_name = transaction_type::type_id::create("var_name");

☐ In general, the string name of the transaction should be the same as the variable name.

This makes it easier to associate UVM object path names with SystemVerilog variables names during
debug.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 33

Sequences

☐ Create user-defined sequence classes by extending the class uvm_sequence, parameterized with the
type of the transaction to be generated by the sequence.

See Example.

☐ Register the sequence class with the factory using the macro `uvm_object_utils as the first line
within the class.

The use of field macros is not recommended in these guidelines, but if you do use field macros, you
should register the sequence class immediately after the declaration of any member variables using the
macro `uvm_object_utils_begin.

☐ After the factory registration macro, declare any member variables (using the prefix m_ as a naming
convention).

☐ Use the rand qualifier in front of any class member variables that might need to be randomized, now
or in the future.

A sequence may include variables and control knobs that would need to be randomized, but also meta-
data (e.g. information to help with debug) that you would not want randomized. The control knob idiom
is useful when writing constrained random sequences. That is, define rand variables within the
sequence object, use those variables within the body task to control the behavior of the sequence, and
set or constrain the values of those variables when the sequence object is randomized, using an in-line
constraint, for example.

☐ After the member variables (if any), define a constructor that includes a single string name argument
with a default value of the empty string, a call to super.new, and is otherwise empty:

The constructor should take the following form:

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 34

function new (string name = "");

 super.new(name);

endfunction

☐ Any housekeeping code associated with the execution of a sequence, such as raising and lowering
objections, should be placed in the pre_start and post_start methods of the sequence.

The body method of the sequence should only execute the raw functional behavior of the sequence.
pre_start and post_start are referred to as user-definable callbacks in the UVM class reference. For
example, you could create a base class that defines pre_start and post_start to perform housekeeping
activities, and then only define the body task in an extended sequence class. Always override pre_start
and/or post_start as opposed to pre_body and/or post_body, because you cannot be sure that the
latter methods will actually be called, depending on how the sequence is started, and there is some
discussion of deprecating pre_body and post_body. (See Objections, p_sequencer)

☐ When generating transactions from the body task of a sequence, do so using procedural code with
the following general pattern:

req = tx_type::type_id::create("req");

start_item(req);

if (!req.randomize()) ...

finish_item(req);

The transaction name need not always be "req", though the variable name and the string name should
always be the same. Additional procedural statements, function arguments, and in-line constraints may
be inserted as necessary.

☐ Do not use the `uvm_do family of macros.

The use of these macros has led some users to experience difficulty with debug and with confusing
behavior. The alternative procedural coding style (shown immediately above) makes it easier to
understand what each step is doing and easier to debug. If despite this recommendations you still want
to go ahead and use the `uvm_do macros, only do so if you are confident you have a thorough
understanding of their behavior.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 35

☐ Use the built-in transaction variables req and rsp within a sequence, unless there is a specific reason
to choose different variable names.

The variables req and rsp are inherited from the base class uvm_sequence. You might want to choose
alternative variable names depending on the actual names of the transactions as used in the interface
definition. A similar rule applies in the driver.

☐ Only generate sequence items (transactions) from UVM sequences, not from ad hoc classes and not
from UVM components.

☐ Always instantiate sequence objects using the factory. Instantiations should take the form:

seq_name = sequence_type::type_id::create("seq_name");

☐ The string name of each sequence object should be the same as the variable name

except where there is a specific reason for the string name to differ from the variable name, such as
when creating multiple sequence objects in a loop using the same variable.

☐ When creating a sequence object, always call the randomize method of the sequence object before
starting the sequence.

This applies even when the apparent class of the sequence object does not contain any rand data
members, because the type of the sequence object could have been overridden using the factory. This
rule applies whenever a sequence object is created and randomized, whether from another sequence or
from a component.

☐ Always check the value returned by the randomize method and report an error should randomization
fail.

A randomization failure is an indication of conflicting constraints, a circumstance that needs to be
detected and debugged, so do not ignore randomization failures.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 36

☐ Start sequences procedurally by calling their start method.

Example

seq_name = sequence_type::type_id::create("seq_name");

if (!seq_name.randomize() with { ... })

 `uvm_error(...)

seq_name.start(sequencer);

Additional procedural statements, function arguments, and in-line constraints may be inserted as
necessary. Avoid using the "default_sequence" configuration parameter as a way to start sequences.
uvm-1.2 recommends using the class uvm_sequence_library if you want to start sequences at the
beginning of a phase. This can be a useful technique for starting background traffic on a sequencer, but
calling the start method should be used as the primary way of starting sequences.

☐ Only override the pre_do, mid_do, and/or post_do callbacks of a sequence class as a way to modify
the behavior of a pre-existing "immutable" sequence class.

That is, only override these callbacks for a sequence for which you either do not have access to the
source code or do not wish to modify the source code. Do not override the pre_do, mid_do, and/or
post_do callbacks as a way to modify the behavior of the body task of the immediately enclosing
sequence class, but only as a way to modify the behavior of some other sequence class which you are
extending. Having defined one or more of these callbacks, you would need to use a factory override to
replace the original sequence class with the extended sequence class.

Example

// Original sequence class that we do not want to modify

class vip_seq extends uvm_sequence #(my_tx);

 `uvm_object_utils(vip_seq)

 function new (string name = "");

 super.new(name);

 endfunction

 task body;

 req = my_tx::type_id::create("req");

 start_item(req);

 if(!req.randomize()) ...

 finish_item(req);

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 37

 ...

// Sequence extended for a specific test

class alt_seq extends vip_seq;

 `uvm_object_utils(alt_seq)

 ...

 int prev_addr = 0;

 function void mid_do(uvm_sequence_item this_item);

 my_tx tx;

 $cast(tx, this_item);

 tx.m_addr = prev_addr + $urandom_range(1, 7); // Overwrite the address

field

 endfunction

 function void post_do(uvm_sequence_item this_item);

 my_tx tx;

 $cast(tx, this_item);

 prev_addr = tx.m_addr; // Store the address to constrain the next

transaction

 endfunction

endclass

class my_test extends existing_test;

 `uvm_component_utils(my_test);

 ...

 function void start_of_simulation_phase(uvm_phase phase);

 // Factory override to replace the original sequence

 vip_seq::type_id::set_type_override(alt_seq::get_type());

 endfunction

endclass

☐ Use the macro uvm_declare_p_sequencer to declare a variable p_sequencer in situations where a
sequence needs access to the sequencer on which it is running.

The use of the p_sequencer variable to access the sequencer on which a sequence is running can help
clarify the structural relationships between sequences and sequencers. The method
uvm_sequence_item::get_sequencer() could be used instead to return the sequencer, but the return
value has the base type uvm_sequencer_base. The macro uvm_declare_p_sequence allows you to
define a specific sequencer type. Do not use the internal variable uvm_sequence_item::m_sequencer.

Example

class my_sequence extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_sequence)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 38

 `uvm_declare_p_sequencer(the_sequencer_class_name)

 ...

 task pre_start;

 // Get the configuration object associated with the sequencer component

 // on which this sequence is currently running

 uvm_config_db #(my_config)::get(p_sequencer, "", "config", m_config);

 endtask

 task body;

 // Set the arbitration algorithm of the current sequencer

 p_sequencer.set_arbitration(SEQ_ARB_STRICT_RANDOM);

 begin

 sequence2 seq2;

 seq2 = sequence2::type_id::create("seq2");

 if (!seq2.randomize())

 `uvm_error(get_type_name(), "Randomize failed")

 // Start a child sequence on the current sequencer

 seq2.start(p_sequencer, this);

 ...

 endtask

endclass

☐ Where a sequence needs access to a sequencer other than the sequencer on which it is itself running,
add a member variable to the sequence object and assign that variable to refer to the other sequencer
before starting the sequence.

This can occur where a virtual sequence needs a reference to a sequencer on which it is to start a
sequence or where a layering sequence needs a reference to a sequencer from which it is to get a
transaction. In either case the member variable in the sequence object should be set to refer to the
other sequencer before the sequence in question is started. This approach is anyway necessary in the
case where a virtual sequence runs on the null sequencer, because the p_sequencer variable cannot be
used to gain acces to the component hierarchy if its value is null.

Example

class my_sequence extends uvm_sequence #(my_tx);

 `uvm_object_utils(my_sequence)

 // Control knob idiom: a data member constrained when the sequence

 // is started

 rand int m_control_knob;

 function new (string name = "");

 super.new(name);

 endfunction

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 39

 task body;

 repeat (m_control_knob) // Number of transactions

 begin

 req = my_tx::type_id::create("req");

 start_item(req);

 if (!req.randomize())

 `uvm_error(get_type_name(), "Randomize failed")

 finish_item(req);

 end

 endtask

endclass

class my_virtual_sequence extends uvm_sequence;

 `uvm_object_utils(my_virtual_sequence)

 my_sequencer m_child_sequencer; // Reference to child sequencer

 function new (string name = "");

 super.new(name);

 endfunction

 task body;

 // Start a non-virtual child sequence

 my_sequence seq;

 seq = my_sequence::type_id::create("seq");

 if (!seq.randomize() with { m_control_knob < 8; })

 `uvm_error(get_type_name(), "Randomize failed")

 seq.start(m_child_sequencer, this);

 endtask

endclass

class my_env extends uvm_env;

 ...

 function void run_phase(uvm_phase phase);

 // Create and start a virtual sequence

 my_virtual_sequence vseq;

 vseq = my_virtual_sequence::type_id::create("vseq");

 if (!vseq.randomize())

 `uvm_error(get_type_name(), "Randomize failed")

 // Set path within sequence object to sequencer for child sequence

 vseq.m_child_sequencer = m_agent.m_sequencer;

 phase.raise_objection(this, "Start of my_env");

 vseq.start(null, null);

 phase.drop_objection(this, "End of my_env");

 endfunction

 ...

endclass

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 40

Stimulus and Phasing

☐ Use a virtual sequence to coordinate the behavior of multiple agents.

Do not over-constrain virtual sequences. Virtual sequences should be used to orchestrate the activity of
multiple parallel agents but without over-constraining the activity of those agents. For constrained
random verification, virtual sequences should not be thought of as being directed tests. Avoid having
virtual sequences that generate very specific scenarios except where absolutely necessary. (Top-level
sequences may be generated automatically to exercises very specific scenarios when using a graph-
based stimulus approach, but that is another matter.)

☐ Virtual sequences should be started on the null sequencer

unless there is a specific reason to define and instantiate a sequencer, for example, to access common
properties stored in a sequencer object or to access the configuration database. (Note that a virtual
sequence does not interact with the sequence queue of the sequencer on which it runs.) (See Example.)

☐ Have a top-level sequence running on each agent that selects between all permissible child
sequences at random.

Avoid over-constraining any top-level sequence. For constrained-random verification, start from the
assumption of randomization. Where directed sequences are required they should be selected as one
choice amongst many, not the default. You can add a specific test to constrain a top-level sequence to
select a directed sequence. (Top-level sequences may be generated automatically to exercises very
specific scenarios when using a graph-based stimulus approach, but that is another matter.)

☐ Keep sequences as generic as possible. Avoid writing directed sequences except where absolutely
necessary.

Basic sequences should assume as little as possible about the context they run in so that they can
generate any scenario. In general, avoid having sequences that are designed to exercise very specific
scenarios. One exception to this rule would be a sequence that generates the specific conditions needs
to reproduce a bug, in which case the name of the sequence and any associated coverpoint should
identify the bug.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 41

☐ Sequences should not be phase-aware.

Writing sequences such that they can be started in any run-time phase helps to make the stimulus code
re-usable.

☐ Do override the run-time phase methods reset_phase, configure_phase, main_phase,
shutdown_phase to generate stimulus, typically by starting sequences, but never in a driver, monitor,
subscriber, or scoreboard component.

The driver, monitor, subscriber, or scoreboard component should be able to run regardless of the run-
time phase. Making any component explicitly phase-aware will in general restrict the possibilities for
reuse, the alternative being to make the behavior of the run_phase method dependent on the value of
some state variable and thus runnable in parallel with any run-time phase. But do override the reset,
configure, main, and shutdown phase methods where the method name is appropriate to the action
being taken.

☐ Do introduce user-defined run-time phases where the above predefined run-time phase methods are
inappropriately named or would cause confusion.

An example might be where the DUT requires a training phase in addition to a configuration phase, or
where the DUT requires multiple main phases. Using clearly-named run-time phase methods makes it
easier to integrate multiple environments.

☐ When integrating multiple environments that each override the predefined or user-defined run-time
phase methods, take care to order the phases correctly by introducing phase domains and synchronizing
phases across domains.

UVM does not impose any definitive rules on what can be done in each of the built-in run-time phases.
When integrating components that use predefined or user-defined run-time phases, it is possible to
place different components in different domains and define explicitly the relationship between the
phases in different domains by synchronizing phases across domains.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 42

Example

class top_level_env extends uvm_env;

 ...

 env m_env1;

 env m_env2; // Environments to be integrated

 function void build_phase(uvm_phase phase);

 uvm_domain domain1, domain2;

 m_env1 = env::type_id::create("m_env1", this);

 m_env2 = env::type_id::create("m_env2", this);

 domain1 = new("domain1");

 m_env1.set_domain(domain1);

 domain2 = new("domain2");

 m_env2.set_domain(domain2); // Two new phase domains

 // Synchronize specific run-time phases across domains

 domain1.sync(domain2, uvm_reset_phase::get(),

uvm_configure_phase::get());

 ...

☐ Do not override the predefined pre- and post- phase methods (e.g. pre_reset_phase), but reserve
these phase for use when synchronizing phases across domains.

The predefined run-time phases with the pre_ and post_ prefixes have informal descriptions that are
extremely similar to the other predefined phases. To avoid making unwarranted assumptions about the
meaning of these phases it is best to confine yourself to overriding the reset, configure, main, and
shutdown phases and to add user-defined phases in other cases. However, the pre- and post- phases
make very useful synchronization hooks when ordering the predefined phases across domains. It would
even be possible to define pre- and post- phases for user-defined phases just for this purpose alone.

Example

domain1.sync(domain2, uvm_configure_phase::get(),

uvm_post_configure_phase::get());

domain1.sync(domain2, my_post_training_phase::get(),

uvm_pre_main_phase::get());

☐ Do plan any phase jumps carefully to ensure UVM components are left in a consistent state.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 43

If you choose to execute phase jumps you must take great care to clean up properly when a phase is
aborted. Do not use phase jumping casually. There are no built-in safeguards. Backward jumps should be
restricted to jumping to other run-time phases. Forward jumps should be restricted to jumping to the
common phases that follow the run-time phases.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 44

Objections

☐ Determine when to end the test by raising and dropping objections in any classes that may need to
extend the test while they complete some processing. (This rule has changed significantly since the first
preliminary release of these guidelines.)

The rationale behind using objections is that the determination of when to end the test needs to depend
on the interaction of components distributed around the verification environment. Raising and dropping
objections at the start and end of a top-level sequence is easy to code but is insufficient to address the
issue that objections were introduced to solve, namely that the test can only end when the downstream
processing of the final transaction is complete. Typically, a driver should raise an objection each time it
gets a transaction from a sequencer and drop the objection when it has finished the pin wiggling
associated with that transaction. A monitor should raise an objection when it detects the start of a new
transaction and should drop the objection when it is sends the transaction through the analysis port. A
scoreboard should raise an objection for each item that needs matching with other items still to be
received from the DUT.

☐ Call the set_propagate_mode(0) method of every objection (UVM 1.2 onward) to disable the
hierarchical propagation of that objection.

The behavior prior to UVM 1.2 (and the default in UVM 1.2) is to propagate every objection up the
component hierarchy, which imposes a measurable simulation speed penalty but is usually functionally
redundant.

☐ Consider the simulation speed impact of raising and dropping objections in inner loops, e.g. for
individual transactions. Remove objections from inner loops if the simulation speed penalty is
significant.

As always, simulation execution speed is dominated by the instructions executed by inner loops, which
in the case of a verification environment usually means code executed per-transaction. In many
scenarios the speed impact of objections will be swamped by other processing done per-transaction.
When it is not, you should find ways to raise and drop objections less frequently or remove objections
that are redundant because their behavior is covered by other objections.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 45

☐ Where a sequence is to raise and drop objections, it should call raise_objection in its pre_start
method and drop_objection in its post_start method.

Although objections could be raised and dropped in the body task of the sequence, it is more consistent
to confine objections to the pre/post_start methods.

☐ Always perform the test if (starting_phase != null) before calling raise_objection or drop_objection
within a sequence.

Prior to uvm-1.2, starting_phase was a member of the class uvm_sequence_base. From uvm-1.2
onward, the starting_phase variable is deprecated and instead must be accessed using the
get_starting_phase method:

task pre_start;

 uvm_phase starting_phase = get_starting_phase(); // uvm-1.2

 if (starting_phase != null)

 starting_phase.raise_objection(this, "Sequence started");

endtask

☐ When starting a sequence that can raise and drop objections, if you want the sequence to raise and
drop objections, set the starting_phase member of the sequence object before starting the sequence.

From uvm-1.2 onward, the starting_phase variable is deprecated and must be set using the
set_starting_phase method:

task run_phase(uvm_phase phase);

 my_sequence seq;

 seq = my_sequence::type_id::create("seq");

 if (!seq.randomize())

 `uvm_error(...)

 seq.set_starting_phase(phase); // uvm-1.2

 seq.start(...);

endtask

☐ When calling raise_objection or drop_objection, always pass a string as a 2nd argument to describe
the objection to help with debug.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 46

The command line flag +UVM_OBJECTION_TRACE turns on objection tracing, which prints out the
description argument of each call to raise or drop an objection.

☐ If the kill method of a sequence is called and the sequence can raise an objection, ensure that the
do_kill method of the sequence is overridden to drop the objection.

Otherwise the objection may never be dropped, which would prevent the phase from ending. In the
case that a sequence ends prematurely due to a phase jump, all objections counts are automatically
cleared, so the objection need not be dropped explicitly. kill is not called automatically on a phase jump.
For example:

function void do_kill;

 if (starting_phase != null)

 starting_phase.drop_objection(this, "Sequence ended prematurely");

endtask

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 47

Components

☐ Create user-defined component classes by extending the appropriate subclass of class
uvm_component in order to indicate intent.

For example, monitors should extend uvm_monitor, scoreboards should extend uvm_scoreboard, and
so forth.

☐ Register the component class with the factory using the macro `uvm_component_utils as the first
line within the class.

The use of field macros is not recommended in these guidelines, but if you do use field macros, you
should register the transaction class immediately after the declaration of any member variables using
the macro `uvm_component_utils_begin.

☐ After the factory registration macro, declare any ports, exports and virtual interfaces

using the suffixes given in the section on Lexical Guidelines and Naming Conventions.

☐ After the ports, exports, and virtual interfaces, declare any member variables (using the prefix m_ as
a naming convention).

This will include member variables that store references to sub-components, if there are any.

☐ After any member variables, define a constructor that includes string name and parent arguments
with no default values and a call to super.new.

Other than the call to super.new, the constructor should otherwise be empty unless it needs to
instantiate covergroups or initialize constants:

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 48

function new (string name, uvm_component parent);

 super.new(name, parent);

endfunction

☐ Instantiate any components from the build_phase method

as opposed to instantiation from the constructor or any other phase method.

☐ Always instantiate components using the factory.

Instantiations should take the form:

var_name = component_type::type_id::create("var_name", this);

☐ The string name of the component should be the same as the variable name

except where there is a specific reason for the string name to differ from the variable name, such as
when creating multiple component objects in a loop using the same variable.

☐ The second argument to create should be the reserved word this.

The second argument represents the parent of the component being instantiated.

☐ Where a user-defined component class extends another user-defined component class, care should
be taken to insert calls of the form super.<phase_name>_phase wherever appropriate, that is, where
the corresponding base class phase method performs some action.

Where a user-defined component class directly extends a class from the UVM base class library, it is not
necessary for the built-in phase methods to make method calls of the form
super.<phase_name>_phase, although this used to be a recommendation in OVM.

function void connect_phase(uvm_phase phase);

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 49

 super.connect_phase(phase); // Not necessary when extending uvm_component

 ...

endfunction

☐ Where a user-defined component class directly extends a class from the UVM base class library and
overrides the standard build_phase method, do not call super.build_phase.

If, contrary to this recommendation, you do call super.build_phase, it must be understood that the
uvm_component::build_phase method calls apply_config_settings, which will set the value of any field
registered using a field macro to the corresponding value taking from the configuration database in the
case where the field name and the hierarchical name of the component happen to match the name and
scope in the configuration database.

Example

class my_component extends uvm_env;

 `uvm_component_utils(my_component)

 // Transaction-level ports and exports

 uvm_analysis_port #(my_tx) a_port;

 // Virtual interfaces

 virtual dut_if vif;

 // Internal data members (variables)

 my_agent m_agent;

 // Constructor

 function new (string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 // Standard phase methods

 function void build_phase(uvm_phase phase);

 a_port = new("a_port", this);

 m_agent = my_agent::type_id::create("m_agent", this);

 endfunction

 function void connect_phase(uvm_phase phase);

 ...

 endfunction

 task run_phase(uvm_phase phase);

 ...

 endfunction

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 50

endclass

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 51

Connection to the DUT

☐ Use one SystemVerilog interface instance per DUT interface.

For example, a DUT interface might be a bus interface, network interface, or serial interface. The
SystemVerilog interface is used to pass information between the UVM verification environment and the
DUT.

☐ Use virtual interfaces to access the SystemVerilog interface instances from the UVM verification
environment.

Having virtual interfaces within the class-based verification environment that refer to actual interface
instantiations within the module-based environment allows agents within the UVM verification
environment to sense and drive nets and variables in the SystemVerilog interfaces connected to the
DUT. As an alternative advanced coding technique, if you make heavy use of parameterized interfaces,
you may need to overcome the shortcomings of parameterized virtual interfaces in SystemVerilog by
calling the methods of an abstract base class from the verification environment while making a concrete
instantiation of that abstract base class inside the interface. (See How to Access a Parameterized
SystemVerilog Interface from UVM.)

☐ Encapsulate virtual interfaces inside a configuration object in the configuration database.

Any virtual interface that refers to a SystemVerilog interface instance should be encapsulated within a
configuration object and that object should be set into the configuration database. The call to
uvm_config_db::set should be made from the scope of a SystemVerilog module that has access to the
corresponding interface instance (possible using a hierarchical name). (See Configurations.)

☐ Copy virtual interfaces from the top-level configuration object to the configuration objects associated
with agents or lower-level envs in the build_phase method of the top-level env.

Virtual interfaces should be copied top-down from configuration object to configuration object, starting
from the top-level configuration object that is created by a SystemVerilog module and finishing in the

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 52

configuration object associated with an agent. There may be one or more intermediate configuration
objects associated with nested envs. The virtual interfaces should be extracted from the top-level
configuration object in the top-level env, not in the test, so that the env can run standalone with an
empty or trivial test class.

Example

class top_env extends uvm_env;

 ...

 top_config m_config;

 bus_config m_bus_config;

 function void build_phase(uvm_phase phase);

 if (!uvm_config_db #(top_config)::get(this, "", "config", m_config))

 `uvm_error(get_type_name(), "Unable to get top_config")

 m_bus_config = new("m_bus_config");

 m_bus_config.vif = m_config.bus_vif;

 ...

 uvm_config_db #(bus_config)::set(this, "m_bus_env", "config",

m_bus_config);

 endfunction

 ...

endclass

☐ An agent should check that its virtual interface has been set.

An agent should get the virtual interface from its configuration object and assign the virtual interface
variables in its driver and monitor. If the virtual interface is null the agent should report a fatal error,
since simulation will be unable to continue and user-defined error reports are easier to debug than
simulator crashes.

Example

class bus_agent extends uvm_agent;

 ...

 bus_config m_config;

 function void bus_agent::build_phase(uvm_phase phase);

 if (!uvm_config_db #(bus_config)::get(this, "", "config", m_config))

 `uvm_error(get_type_name(), "bus config not found"

 if (m_config.vif == null)

 `uvm_fatal(get_type_name(), "bus virtual interface not set")

 ...

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 53

TLM Connections

☐ Make TLM port/export connections and assign virtual interfaces in the connect_phase method.

☐ Communicate between UVM components using ports and exports, including analysis ports and
exports where appropriate.

In general, prefer ports and exports for communication between components rather than using ad hoc
shared objects or other UVM communication mechanisms. Where ad hoc synchronization is required,
use the uvm_event or uvm_barrier to synchronize components. (See Clocks, Timing, Synchronization,
and Interfaces).

☐ Use analysis ports and analysis exports (or objects of class uvm_subscriber) when making one-to-
many connections between UVM components.

In many situations, analysis ports and exports are preferable to regular ports and exports because
analysis ports support the broadcast of transactions to multiple components (so-called subscribers) and
allow ports to be left unconnected. On the other hand, regular ports and exports enforce one-to-one
connections, which may sometimes be what you want. Analysis ports are usually the best choice for
passing transactions out of agents and for passing transactions to or between scoreboards, checkers,
and coverage collector components.

☐ When making peer-to-peer connections between components, connect a port (or analysis port)
directly to an export (or analysis export) without any intervening FIFO.

Direct port-to-export connections should be regarded as the norm in UVM, with FIFOs only inserted
when needed. When FIFOs are needed, they should be inserted inside components rather than between
components.

☐ Communicate with an agent in one of two ways: either connect the analysis port of the agent to a
subscriber or access the sequencer within the agent using a direct object reference from outside.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 54

Since agents have a known internal structure, it is permissible to access internal objects directly from
outside using hierarchical object references. It is recommended to connect the analysis port of the
monitor to an analysis port of the agent, but it is also possible to access the analysis port of the monitor
directly from outside.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 55

Configurations [UPDATED]

The UVM configuration database, described in this section, is separate and distinct from the UVM
factory, which is described in the next section.

☐ Use the configuration database uvm_config_db rather than the resource database
uvm_resource_db.

The only reason for using uvm_resource_db rather than uvm_config_db would be that they have
different rules when setting the same item (i.e. same name and same scope) multiple times. However,
rather than learning two sets of rules, you can accomplish everything you need to do using the
uvm_config_db alone.

☐ Group the configuration parameters for a given component into a configuration object and set that
configuration object into the configuration database.

Configuration parameters may be stored in the configuration database singly (by means of individual
calls to set and get) or may be grouped within a configuration object. In general, it is better to use a
configuration object, because this provides a single place where you expect to find the configuration
parameters and allows all the configuration parameters to be randomized with a single call. The
configuration database will actually contain a reference to the configuration object rather than the
object itself.

☐ The top-level configuration object should contain references to any lower-level configuration objects.
[UPDATED]

The top-level configuration object should be instantiated from the top-level module, and the lower level
configuration objects should be instantiated from the constructor (new) of the top-level configuration
object. Lower level configuration objects will typically be associated with agents. This approach has the
benefit that there is no need to replicate or copy information between the top-level and lower level
configuration objects, the top-level configuration object can include constraints that reference variables
contained within the lower level configuration objects, and variables in any of the lower level
configuration objects can be assigned from the top-level module or the test class as well as from the
top-level env class. (See Example.)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 56

☐ Create user-defined configuration classes by extending the class uvm_object.

Extending uvm_object gives the configuration object a hierarchical name and enables UVM seeding for
better random stability. Although configuration objects are not transactions or components,
randomization can still be useful.

Example

class my_agent_config extends uvm_object;

 virtual my_if vif;

 uvm_active_passive_enum is_active;

 bit coverage_enable; // From the UVM User Guide

 bit checks_enable;

 function new(string name = "");

 super.new(name);

 endfunction

endclass

☐ Use the class name <component_class>_config or <sequence_class>_config for the configuration
class associated with a component or a sequence, respectively, where <component_class> is the class
name of the component and <sequence_class> is the class name of the sequence.

☐ Use the field name "config" for the configuration object in the configuration database.

The variable name that refers to the configuration object once it is retrieved from the configuration
database should always be m_config. (See Naming Conventions.)

☐ Do not register user-defined configuration classes with the factory.

As a consequence, a configuration class can have a constructor with any number of user-defined
arguments.Think of the configuration object as a set of parameter values, not as stimulus.

☐ A component should typically get and set configuration parameters (typically configuration objects)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 57

in its build_phase method, as opposed to any other phase methods.

Doing so allows those parameters to be visible in any child components. A component should extract
parameters from its own configuration object, then construct configuration objects for any of its
children that require their own configuration object, then set those configuration objects into the
configuration database, all from the build_phase method. Exceptionally, there may be situations where
configuration parameters are retrieved from the configuration database in later phases. UVM has a
method wait_modified which can be called during the run phase to wake up a process when a
configuration parameter is set, but it must be understood that setting and getting configuration
parameters is a relatively costly operation in terms of CPU time.

Example [UPDATED]

class my_agent_config extends uvm_object;

 virtual my_agent_if vif;

 uvm_active_passive_enum is_active = UVM_ACTIVE;

 bit coverage_enable;

 bit checks_enable;

 function new(string name = "");

 super.new(name);

 endfunction

endclass

class top_config extends uvm_object;

 rand my_agent_config m_my_agent_config;

 function new(string name = "");

 super.new(name);

 m_my_agent_config = new("m_my_agent_config");

 m_my_agent_config.is_active = UVM_ACTIVE;

 m_my_agent_config.checks_enable = 1;

 m_my_agent_config.coverage_enable = 1;

 endfunction : new

endclass : top_config

module top_tb;

 ...

 top_config top_env_config;

 initial

 begin

 top_env_config = new("top_env_config");

 if (!top_env_config.randomize())

 `uvm_error("top_tb", "Failed to randomize top-level configuration

object")

 top_env_config.m_my_agent_config.vif = th.my_agent_if_0;

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 58

 uvm_config_db #(top_config)::set(null, "uvm_test_top", "config",

top_env_config);

 uvm_config_db #(top_config)::set(null, "uvm_test_top.m_env", "config",

top_env_config);

 run_test();

 end

endmodule

class top_env extends uvm_env;

 `uvm_component_utils(top_env)

 my_agent_config m_my_agent_config;

 my_agent_agent m_my_agent_agent;

 my_agent_coverage m_my_agent_coverage;

 top_config m_config;

 ...

 function void build_phase(uvm_phase phase);

 if (!uvm_config_db #(top_config)::get(this, "", "config", m_config))

 `uvm_error(get_type_name(), "Unable to get top_config")

 m_my_agent_config = m_config.m_my_agent_config;

 uvm_config_db #(my_agent_config)::set(this, "m_my_agent_agent", "config",

m_my_agent_config);

 if (m_my_agent_config.is_active == UVM_ACTIVE)

 uvm_config_db #(my_agent_config)::set(this,

"m_my_agent_agent.m_sequencer", "config", m_my_agent_config);

 uvm_config_db #(my_agent_config)::set(this, "m_my_agent_coverage",

"config", m_my_agent_config);

 m_my_agent_agent = my_agent_agent

::type_id::create("m_my_agent_agent", this);

 m_my_agent_coverage =

my_agent_coverage::type_id::create("m_my_agent_coverage", this);

 endfunction : build_phase

 ...

☐ Always check the bit returned from uvm_config_db#(T)::get to ensure that the configuration
parameter exists in the configuration database.

This check can also help to catch misspellings of the configuration parameter name.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 59

☐ A sensible default value should be chosen if uvm_config_db#(T)::get returns 0.

A verification component should have a sensible default behavior in the case that its configuration
parameters have not been set. A configuration parameter could be left unset either by not setting a
configuration object in the configuration database or by not setting the value of a parameter within the
configuration object (assuming this can be detected). In either case the component should detect that
the configuration parameter has not been set explicitly and should choose an appropriate default value.

☐ Each component should get the configuration object associated with that specific component
instance, and should not get the configuration object of any other component instance.

In other words, the call to get should always take the form:

uvm_config_db#(T)::get(this, "", ...);

Although a component should not in general get the configuration object of another unrelated
component from the configuration database, a group of closely related components can share the same
configuration object. For example, a driver, sequencer, monitor, or coverage collector can access the
configuration object of the associated agent. This is best done by making multiple calls to
uvm_config_db#(T)::set (See Example.) [UPDATED]

☐ The configuration object associated with any given component instance should be set by its parent or
by some other direct ancestor of that component instance, and not by any other component instance.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 60

Figure: Using Configuration Objects

☐ Avoid using an absolute hierarchical path name as the 2nd argument to uvm_config_db#T(T)::set, and
provide the shortest possible unique path name.

Because we have a hierarchy of configuration objects that parallels the component hierarchy, a
component would typically be setting the configuration objects of its immediate children, and would
only need to reach deeper into the component hierarchy when a particular component has no
configuration object. In general, if you do need to reach down into the component hierarchy from a test
or env, use a wildcard at the start of the path name and provide the shortest possible unique name.

☐ A component instance may be associated with one configuration object or with no configuration
object, and several component instances may be associated with the same configuration object.

A component is not obliged to get or set a configuration object if there are no configuration parameters
to be passed at that location in the component hierarchy.

☐ For an agent, include a variable is_active in the configuration object to determine whether the agent

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 61

is active or passive. Override the virtual get_is_active method to return this value. Check get_is_active
before creating and connecting the sequencer and driver within the agent.

The UVM standard does not expose the is_active member of class uvm_agent but instead provides a
virtual method get_is_active to get the value and overrides the method build_phase to set the value of
is_active based on the value of the field "is_active" in the configuration database. Although we
recommend that you should encapsulate the active/passive flag in the configuration object and override
get_is_active to return this flag, we also recommend that as a defensive programming measure you
should check the "is_active" field in the configuration database, if it exists, and warn of any
inconsistencies between the value of the is_active field in the configuration objection and the
"is_active" field in the configuration database.

Example

class my_agent extends uvm_agent;

 `uvm_component_utils(my_agent)

 uvm_analysis_port#(my_transaction) a_port;

 my_config m_config;

 my_sequencer m_sequencer;

 my_driver m_driver;

 my_monitor m_monitor;

 function new(string name, uvm_component parent);

 super.new(name, parent);

 endfunction

 function void build_phase(uvm_phase phase);

 if (!uvm_config_db #(my_config)::get(this, "", "config", m_config))

 `uvm_error(get_type_name(), "Agent config object is missing from

config_db")

 if (get_is_active() == UVM_ACTIVE)

 begin

 m_sequencer = my_sequencer::type_id::create("m_sequencer", this);

 m_driver = my_driver ::type_id::create("m_driver", this);

 end

 m_monitor = my_monitor::type_id::create("m_monitor", this);

 a_port = new("a_port", this);

 endfunction

 function void connect_phase(uvm_phase phase);

 if (get_is_active() == UVM_ACTIVE)

 m_driver.seq_item_port.connect(m_sequencer.seq_item_export);

 m_monitor.a_port.connect(a_port);

 endfunction

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 62

 virtual function uvm_active_passive_enum get_is_active();

 return uvm_active_passive_enum'(m_config.is_active);

 endfunction

 /*

 // Alternative version that includes defensive programming to check for

conflicts

 // between the config object and the "is_active" field

 local int m_is_active = -1;

 virtual function uvm_active_passive_enum get_is_active();

 if (m_is_active == -1)

 begin

 if (uvm_config_db#(uvm_bitstream_t)::get(this, "", "is_active",

m_is_active))

 begin

 if (m_is_active != m_config.is_active)

 `uvm_warning(get_type_name(), "is_active field in config_db

conflicts with config object")

 end

 else

 m_is_active = m_config.is_active;

 end

 return uvm_active_passive_enum'(m_is_active);

 endfunction

 */

endclass: my_agent

☐ If a sequence is to be parameterized, the parameters for the sequence should be put into a
configuration object in the configuration database. The configuration object should be associated with
the sequencer on which the sequence is to run.

There may be multiple configuration objects in the configuration database associated with a particular
sequencer but with different sequences that will run on that sequencer. It is the sequences and not the
the sequencer component itself that will get these objects from the configuration database. Although it
is possible for a sequence to get a configuration object from the configuration database without
reference to the hierarchical path of a sequencer component, doing so makes it harder to separately
parameterize multiple instances of that sequence that may be running on different sequencers or no
sequencer. In other words, while a sequence is not obliged to get its configuration object through its
sequencer, we recommend that it does so. (See Example.) [UPDATED]

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 63

☐ Any configuration object associated with a sequence should be got from the configuration database
at the start of the sequence and a variable in the sequence object should be assigned to refer to that
configuration object. [UPDATED]

The variable that refers to the configuration object may be set before the sequence is started or within
the sequence itself. It is better to get the configuration object only once, when starting the sequence,
for performance reasons, and certainly not in an inner loop. On the other hand, to support late
randomization, the sequence should use the most up-to-date state information when setting in-line
constraints, so it is sometimes appropriate to get information from the configuration object in the body
task of the sequence, assuming the configuration object refers to information that is being updated
during the run-time phases. (See Example.) [UPDATED]

☐ If a component directly assigns the values of variables (including virtual interfaces) in its child
components, it should do so in its build_phase method after creating those child components.

A component may assign variables in its child components instead of using the configuration database
to pass information from parent to child, although you should note that some flexibility is lost by doing
this. An example would be an agent setting a virtual interface in its driver or monitor. It must be
remembered that whereas the build_phase methods are called top-down, the connect_phase methods
are called bottom-up with respect to the component hierarchy, so connect_phase cannot be used to
propagate variable values down the hierarchy (because connect_phase for a child is called before
connect_phases for its parent).

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 64

The Factory

☐ Always instantiate transaction, sequence, and component objects using the factory

Instantiate these objects using the factory rather than using a direct call to new, that is, always
instantiate transactions and sequences using a call of the form:

var_name = type_name::type_id::create("var_name");

and components using a call of the form

var_name = type_name::type_id::create("var_name", this);

where var_name is the name of a user-defined variable, type_name is the class of the object, type_id
and create are names defined by UVM, and this is a SystemVerilog keyword. Using the UVM factory
consistently in this way is one of the keys to being able to exploit OOP in UVM, because it allows the
type of an object to be determined at run time rather than at compile time and hence to be overridden
without needing to modify the source code (of the call the create).

☐ When using a factory override to substitute a transaction, sequence, or component object with
another object whose class extends the class of the original, the factory override should take one of
these forms:

old_type_name::type_id::set_type_override(new_type_name::get_type());

old_type_name::type_id::set_inst_override(new_type_name::get_type() ...);

This is in contrast to directly calling the methods of class uvm_factory, which is discouraged for the sake
of consistency.

☐ Call the static method uvm_factory::get() when you need access to the factory.

Do not use the global variable factory for access to the singleton factory (factory is anyway deprecated
in uvm-1.2). An example is when calling the print method of the factory:

uvm_factory factory = uvm_factory::get();

factory.print();

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 65

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 66

Tests

☐ Do not generate stimulus directly from the test, but use the test to set configuration parameters and
factory overrides.

It is generally better to launch sequences from the environment rather than from the test, and to
restrict the test to parameterizing or customizing the environment. The environment should know how
to exercise the DUT. (See Stimulus.)

☐ Set up the fixed aspects of the verification environment and generate default stimulus in the env
class, not the test class, so that the env will run even with an empty test.

The env should run standalone and should exercise the DUT with legal stimulus, even given an empty
test. In applications where classic constrained random verification is appropriate, coverage can be
increased by repeating the test with different seeds. (See Coverage-Driven Verification Methodology.)

☐ Where appropriate, use test base classes to define structure and behavior that is common across a
set of tests, and create individual tests by extending these base classes.

Moving common code into a base class is an example of good object-oriented programming practice,
but it is the principle of planning for reuse that is the most important thing. Remember to call the
super.<phase_name>_phase method from any standard phase methods (see Components).

☐ For reuse, avoid making tests dependent on the specific details of the verification environment.

For example, avoid introducing hierarchical object references that point deep into the verification
environment. When referencing components from the test, use uvm_top.find("*.path") to locate
components within the verification environment rather than using full "hardwired" object references,
but note that the find method can be expensive in terms of CPU time (so do not call it from an inner
loop).

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 67

☐ Use the command line processor to modify the behavior of tests without the need for recompilation.

For example, select the test with the +UVM_TESTNAME command line argument and start the test by
calling run_test with no arguments:

uvm_top.run_test();

You can also use the command line processor to set factory overrides, set values in the configuration
database, and set the verbosity level, all without any need to re-compile the SystemVerilog source code.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 68

Messaging

☐ To report a message, always use one of the eight standard report macros `uvm_info,
`uvm_info_context, and so forth, rather than ad hoc $display statements or similar.

File I/O from a simulation environment can often dominate simulation run time, so it is important to use
the reporting features of UVM, such as message verbosity, to control the number of messages
generated.

☐ Set the message id either to a static string or to get_type_name().

The message id is the first argument to report macros such as `uvm_info, `uvm_warning, and so forth.
Set it to a static string in cases where that string is made common to all the reports in the current VIP
and thus helps identify the report as originating from that VIP. Otherwise set it to get_type_name(),
which returns a string that represents the type of the current class. Note that get_type_name() may be
useful during the original development and debug of VIP, but may not be so appropriate within VIP that
is to be widely deployed. get_type_name() is in any case a good fallback if there is no other obvious
choice.

☐ Set message verbosity levels thoughtfully, methodically, and consistently throughout the code to
avoid unnecessary data in the simulation log file and to differentiate between messages intended for
use during the development and debug of the verification environment itself and messages intended for
use when running tests and debugging the DUT.

☐ By default, set the verbosity level of each message to a high number such that the message is less
likely to be reported, rather than to a low number such that the message is always reported.

The following verbosity levels are recommended:

UVM_HIGH and UVM_DEBUG - messages used to debug the verification environment or tests
themselves, typically suppressed once the verification environment or tests are able to reach the start of
the run phase successfully.

UVM_MEDIUM - messages related to the execution of sequences or pin-level behaviour, typically
generated during the run phase and used to help diagnose errors in the DUT

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 69

UVM_NONE - messages never suppressed by the verbosity mechanism, so only to be used infrequently
to relay information that is always significant, such as major phase or state changes during test
execution

It can be useful to set the verbosity level for a particular test from the simulator command line using the
command line argument +UVM_VERBOSITY

☐ Set message severity levels thoughtfully to differentiate between messages that are purely
informational, messages that may represent errors, and messages that are certainly errors.

The following severity levels are recommended:

UVM_INFO - message is for information only and does not indicate an error.

UVM_WARNING - the message indicates a potential error that requires further investigation

UVM_ERROR - the message indicates a real error, but simulation is allowed to proceed. Use when it may
be possible to gather further information about the origin of the error by allowing simulation to
continue for a while longer. By default, UVM_ERROR is associated with the quit count, which aborts
simulation when a maximum error count is reached.

UVM_FATAL - the message indicates an error of such severity that the simulation should not be allowed
to continue

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 70

Register Layer

☐ If you use a generator to create the SystemVerilog code for the register model, do not modify the
generated code.

You should use a generator to create the register model because doing so is much more productive than
typing in the register model by hand. But you need to be aware that any edits you make to the
generated files will be lost if the register model is re-generated, so you should avoid making any such
edits.

☐ The top-level UVM environment should instantiate the register block using the factory and should call
the build method of the register model.

The factory method call type_id::create and the call to build should be made from the build_phase
method of the environment.

☐ In the case of a hierarchically organized UVM environment where child environments use register
models, there should be a single top-level register block that instantiates the register blocks associated
with the child environments, and so on down the hierarchy.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 71

Figure: Connecting the Register Layer

☐ Any UVM environment that uses a register model should have a variable named regmodel that stores
a reference to the register block for that specific environment.

☐ A UVM environment that has a register model should set the regmodel variable of any child
component that also uses a register model to the corresponding sub-block of its register block.

The regmodel variable of the child should be set from the build_phase method of the parent.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 72

☐ A UVM environment should only instantiate a register block if the value of the environment's
regmodel variable is null.

For a top-level environment the value of regmodel will be null, so the environment should instantiate
the register block and set the value of regmodel. For a lower-level environment the value of regmodel
should not be null because it should have been set by a higher-level environment. This mechanism
allows the same environment to be instantiated either as a top-level environment (with a register
model) or as a lower-level environment (with no register model of its own).

Example

top_reg_block regmodel;

function void top_env::build_phase(uvm_phase phase);

 if (regmodel == null)

 begin

 // Instantiate register model for top-level env

 regmodel = top_reg_block::type_id::create("regmodel");

 regmodel = build();

 end

 // Set regmodel variable of lower-level env through config object

 m_bus_env_cfg = new("m_bus_env_cfg");

 m_bus_env_cfg.regmodel = regmodel.bus;

 ...

endfunction

☐ The variable name and the UVM instance name of each child register block in the register model itself
should correspond to the name of the associated agent.

For example, for an agent named bus, the instance of the register block associated with the
environment that instantiates that agent (bus_reg_block below) should have the variable name bus in
the register model and should have the UVM instance name "bus". The top-level register block
(top_reg_block below) will need to have one or more an address maps (bus_map below) that subsume
the address maps of the child register blocks (bus.bus_map below).

Example

// Top-level register block

class top_reg_block extends uvm_reg_block;

 `uvm_object_utils(top_reg_block)

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 73

 bus_reg_block bus; // Child register block for an agent named bus

 uvm_reg_map bus_map;

 function new(string name = "");

 super.new(name, UVM_NO_COVERAGE);

 endfunction

 virtual function void build;

 bus = bus_reg_block::type_id::create("bus");

 bus.configure(this);

 bus.build();

 bus_map = create_map("bus_map", 'h0, 1, UVM_LITTLE_ENDIAN);

 default_map = bus_map;

 bus_map.add_submap(bus.bus_map, 'h0);

 lock_model();

 endfunction

 ...

☐ A register block should only model DUT registers that are accessible by the UVM sequences
associated with the immediately enclosing UVM environment.

The register model should be structured as a set of hierarchically nested register blocks that reflect the
hierarchy of the DUT in such a way that individual register blocks can be reused at the block, subsystem,
or full chip level. (See Figure.)

☐ A UVM environment that uses a register model and that instantiates an agent should instantiate and
connect a register adapter and a register predictor for that agent.

The register adapter and predictor should be instantiated in the build_phase method and should be
connected in the connect_phase method of the environment. The adapter should be connected to the
sequencer and the predictor to the monitor of the agent. (See Figure.)

☐ A register model should use explicit prediction to keep its mirror values synchronized with the
register values in the DUT.

Explicit prediction requires that you connect the analysis port of the monitor in the agent to a UVM
register predictor, thereby allowing the mirror values in the register model to be updated every time

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 74

there is relevant activity on the DUT interface regardless of whether or not that activity was initiated
through the register layer. The predictor component should be instantiated in the same environment as
the agent, and the address map associated with the predictor should have auto-prediction turned off by
calling its set_auto_predict method with an argument value of 0.

☐ The address map variable .map of the predictor in each child register block should be assigned to
refer to the corresponding address map of the top-level register block.

This ensures that registers are accessed using their global address in the system address map rather
than an offset in a local address map.

Example

// To connect the register layer to an agent named bus

bus_agent m_bus_agent;

bus_reg_block regmodel;

reg2bus_adapter m_reg2bus;

uvm_reg_predictor #(bus_tx) m_bus2reg_predictor;

function void bus_env::build_phase(uvm_phase phase);

 ...

 m_bus_agent = bus_agent ::type_id::create("m_bus_agent", this);

 m_reg2bus = reg2bus_adapter::type_id::create("m_reg2bus", this);

 m_bus2reg_predictor =

 uvm_reg_predictor #(bus_tx)::type_id::create("m_bus2reg_predictor",

this);

endfunction

function void top_env::connect_phase(uvm_phase phase);

 if (regmodel.get_parent() == null)

 regmodel.default_map.set_sequence(m_bus_agent.m_sequencer, m_reg2bus);

 m_bus2reg_predictor.map = regmodel.bus_map;

 m_bus2reg_predictor.adapter = m_reg2bus;

 regmodel.bus_map.set_auto_predict(0);

 m_bus_agent.m_monitor.ap.connect(m_bus2reg_predictor.bus_in);

endfunction

During the development of the verification environment it might be helpful to print out details of the
registers in the register model for debug purposes. This should be done from the
end_of_elaboration_phase method.

Example

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 75

function void end_of_elaboration_phase(uvm_phase phase);

 uvm_reg regs[$];

 string name;

 regmodel.bus_map.get_registers(regs);

 `uvm_info(get_type_name(),

 $sformatf("Found %d registers", regs.size()), UVM_MEDIUM)

 for (int j = 0; j < regs.size(); j++)

 `uvm_info(get_type_name(),

 $sformatf("regs[%0d]: %s", j, regs[j].get_name()), UVM_HIGH)

endfunction

☐ A register sequence that reads or write registers in a register model should extend uvm_sequence
and should have a variable named regmodel that stores a reference to the corresponding register block.

Example

class my_reg_sequence extends uvm_sequence;

 `uvm_object_utils(my_reg_sequence)

 bus_reg_block regmodel;

 task body;

 uvm_reg_data_t data;

 uvm_status_e status;

 regmodel.reg0.write(status, .value('hab), .parent(this));

 assert (status == UVM_IS_OK);

 regmodel.reg0.read(status, .value(data), .parent(this));

 assert (status == UVM_IS_OK);

 assert (data === 'hab);

 endtask

endclass

☐ Before starting a sequence that reads or writes registers, set the regmodel variable of that sequence.

Example

// Starting a register sequence

my_reg_sequence vseq;

vseq = my_reg_sequence::type_id::create("vseq");

vseq.randomize();

vseq.regmodel = regmodel;

vseq.set_starting_phase(phase);

vseq.start(null);

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 76

Functional Coverage

For a general discussion of coverage-driven verification in UVM, see Coverage-Driven Verification
Methodology.

☐ Collect functional coverage in the UVM verification environment using the SystemVerilog covergroup
construct.

It is sometimes necessary or more convenient to process or transform the values coming from the DUT
to create derived values that are actually sampled as coverpoints. For example, you might calculate the
difference between two addresses that appear consecutively on a bus and use the resulting value as a
coverpoint. This technique can overcome the fundamental limitation that covergroups are defined at
instantiation time and the definitions of the coverpoints cannot change dynamically.

Example

class my_agent_coverage extends uvm_subscriber #(bus_tx);

 `uvm_component_utils(my_agent_coverage)

 bus_tx m_item;

 int m_address_delta;

 covergroup m_cov;

 cp_address_delta: coverpoint m_address_delta {

 bins zero = {0};

 bins one = {1};

 bins negative = { [-128:-1] };

 bins positive = { [1: 127] };

 option.at_least = 16;

 }

 endgroup

 function new(string name, uvm_component parent);

 super.new(name, parent);

 m_cov = new;

 endfunction : new

 function void write(input bus_tx t);

 m_item = t;

 m_address_delta = m_item.current_address - m_item.previous_address;

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 77

 m_cov.sample();

 endfunction : write

endclass : my_agent_coverage

☐ Where appropriate, collect functional coverage information in SystemVerilog interfaces using the
cover property statement.

Property-based coverage using the cover property statement can be a good way to collect functional
coverage information for temporal sequences in interface protocols (as opposed to sample-based
coverage using the covergroup statement), but note that the cover property statement cannot be used
within a class-based environment. (See Concurrent assertions)

☐ Either place a covergroup in a class as an embedded covergroup or place a covergroup in a package
and parameterize the covergroup so that it can be instantiated from classes in that package.

The embedded covergroup is the most straightforward way to use a covergroup in a class, but several
classes can reuse the same covergroup by placing the covergroup declaration in a package outside of
any class and having the classes instantiate the covergroup with appropriate parameters.

☐ Covergroups should be instantiated within UVM component classes as opposed to within transaction
or sequence classes.

Coverage should be collected from quasi-static objects that endure throughout the simulation, not from
objects that come-and-go dynamically over time.

☐ Covergroups should be instantiated within UVM subscribers or scoreboards that are themselves
instantiated within a UVM environment class and are connected to the analysis ports of
monitors/agents.

Use monitors to gather and assemble information in the form of transactions that are sent out through
their analysis ports, but do not place covergroups inside the monitors themselves. This separation
between data gathering in the monitor and data analysis in the subscriber/scoreboard is important for
reuse.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 78

☐ Instantiate the covergroup in the constructor of the coverage collector class.

It is a SystemVerilog rule that embedded covergroups must be instantiated from the constructor. This
goes against the general rule in UVM of keeping the constructor empty and creating sub-objects from
the build_phase method.

☐ In order to collect functional coverage information for internal signals within the DUT, encapsulate
references to hierarchical paths to the DUT in a single SystemVerilog module (or interface), then access
that module from the UVM environment using a virtual interface and SystemVerilog interface in the
usual way.

Internal signals within the DUT can be accessed using SystemVerilog hierarchical references or using the
bind statement. Encapsulating all hierarchical references within a single module (or interface) allows the
verification environment to be kept clean.

☐ Where coverage collection spans multiple DUT interfaces and thus depends on analysis transactions
received from more than one agent, use the `uvm_analysis_imp_decl macro to provide multiple
analysis exports in the coverage collector class.

The uvm_subscriber class only has a single analysis export. The `uvm_analysis_imp_decl macro offers
the most convenient way to write a subscriber class that accepts multiple incoming transaction streams,
each with their own distinct write method.

Example

`uvm_analysis_imp_decl(_expected)

`uvm_analysis_imp_decl(_actual)

class my_cov_collector extends uvm_scoreboard;

 `uvm_component_utils(my_cov_collector)

 uvm_analysis_imp_expected #(tx_t, my_cov_collector) expected_export;

 uvm_analysis_imp_actual #(tx_t, my_cov_collector) actual_export;

 ...

 function void build_phase(uvm_phase phase);

 expected_export = new("expected_export", this);

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 79

 actual_export = new("actual_export", this);

 endfunction

 ...

 function void write_expected(tx_t t);

 ...

 endfunction

 function void write_actual(tx_t t);

 ...

 endfunction

 ...

☐ Group coverpoints into multiple covergroups in order to separate coverage of specification
features from coverage of implementation features.

Keeping specification coverage separate from implementation coverage will help at the point
when the coverage model is re-used.

☐ Use a variable coverage_enable within the configuration object of the coverage collector to
enable or disable coverage collection.

Coverage collection incurs a performance and memory cost, and some use cases for the
verification component may not require coverage collection. The UVM User Guide recommends
the use of a variable named coverage_enable for this purpose.

☐ Sample covergroups by calling their sample method as opposed to specifying a clocking
event for the covergroup.

This can be the built-in sample method or an overridden sample method with a list of
arguments, i.e. covergroup IDENTIFIER with function sample(...). Calling the sample method
allows values to be sampled when and only when transactions arrive at the coverage collection
component from the DUT.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 80

☐ Do not sample covergroups more frequently than necessary. Consider using a conditional
expression iff (expression) with each coverpoint to reduce the sampling frequency.

Sampling too often will unnecessarily inflate the volume of coverage data that needs to be
stored and analyzed. It might not be necessary or meaningful to sample each coverpoint every
time the covergroup is sampled. Any conditional expression should be kept simple: complex iff
conditions can be hard to debug.

☐ Sample values within the DUT or at the outputs of the DUT. Do not sample the stimulus
applied to the inputs of the DUT. Sample DUT registers when the register value is changed by
the DUT, not when it is changed directly by the stimulus.

Sampling stimulus does not tell you anything about the behavior of the DUT itself, only about
the behavior of the stimulus generator.

☐ Consider setting the option.at_least of each covergroup and coverpoint to some value other
than the default value of 1.

The default value of option.at_least only ensures that each state is hit once, which in general is
insufficient to test whether or not the state has become deadlocked.

☐ Do not set option.weight or option.goal of a covergroup or coverpoint.

There are two potential problems. First, the methodological problem that giving a greater or
lesser weight to certain states might distort the coverage reporting, and second, the practical
problem that these options are not implemented consistently across simulators.

☐ Design coverpoint bins carefully to ensure that functionally significant cases are covered.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 81

Since 100% coverage of the state space is unrealistic, careful design of coverage bins can be
critical to verification quality. Part of the solution can be to create separate bins for typical
values, special values, and boundary conditions. The choice of bins should relate back to the
verification plan.

☐ When designing coverpoints, specify any illegal values or values to be excluded for coverage
as ignore_bins. Do not use illegal_bins.

Covergroups should be confined to collecting functional coverage information and not linked
directly to error reporting. Illegal values should be trapped either using assertions or using the
UVM report handler.

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 82

Web Links

Easier UVM Coding Guidelines
Introduction to the Easier UVM Coding Guidelines
Summary of the Easier UVM Coding Guidelines
Detailed Explanation of the Easier UVM Coding Guidelines
Easier UVM Glossary

Easier UVM - Deeper Explanations
Coverage-Driven Verification Methodology
Requests, Responses, Layered Protocols and Layered Agents
How to Access a Parameterized SystemVerilog Interface from UVM

Easier UVM Code Generator
Easier UVM Code Generator - Download
Easier UVM Code Generator - Tutorial Part 1: Getting Started
Easier UVM Code Generator - Tutorial Part 2: Adding User-Defined Code
Easier UVM Code Generator - Tutorial Part 3: Adding the Register Layer
Easier UVM Code Generator - Tutorial Part 4: Hierarchical Verification Environments
Easier UVM Code Generator - Tutorial Part 5: Split Transactors
Easier UVM Code Generator - Frequently Asked Questions (FAQ)
Easier UVM Code Generator - Reference Guide

Easier UVM Video Tutorial
Introducing Easier UVM
Easier UVM - The Big Picture
Key Concepts of the Easier UVM Code Generator
Easier UVM - Components and Phases
Easier UVM - Configuration
TLM Connections in UVM
Easier UVM - Transaction Classes
Easier UVM - Sequences
Easier UVM - Tests
Easier UVM - Reporting

A YouTube playlist with all the above videos and more

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/summary
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/detail
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/glossary
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/coverage-driven
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/layering
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_guidelines/parameterized_interface
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/tut1
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/tut2
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/tut3
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/tut4
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/tut5
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/faq
http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_generator/ref
http://www.doulos.com/knowhow/video_gallery/#anchor40
http://www.doulos.com/knowhow/video_gallery/#anchor41
http://www.doulos.com/knowhow/video_gallery/#anchor42
http://www.doulos.com/knowhow/video_gallery/#anchor43
http://www.doulos.com/knowhow/video_gallery/#anchor44
http://www.doulos.com/knowhow/video_gallery/#anchor46
http://www.doulos.com/knowhow/video_gallery/#anchor47
http://www.doulos.com/knowhow/video_gallery/#anchor48
http://www.doulos.com/knowhow/video_gallery/#anchor49
http://www.doulos.com/knowhow/video_gallery/#anchor50
https://www.youtube.com/playlist?list=PLBIILfL2t1lnvzw7vF0arlvu36Wj4--D7

 Copyright © 2014-2016 by Doulos. All rights reserved.
 The information in this document is provided “as is” without warranty of any kind.

 You may use or modify the coding guidelines in this document for your own purposes. 83

Easier UVM Paper and Poster
Easier UVM - Coding Guidelines and Code Generation - as presented at DVCon 2014

Easier UVM Q&A Forum
Easier UVM Google Group

Easier UVM Examples Ready-to-Run on EDA Playground
Minimal example with driver
Minimal example with coverage in a subscriber as well as driver and monitor.
Minimal example with register sequence and register block
Example with four interfaces/agents, two of which use a register model.
Minimal example with dual-top modules and split transactors
Minimal example showing a UVM sequence getting information from the config database
Minimal example showing features of objections and the command line processor
Minimal example showing the reporting features of UVM.
Example that drops an objection when coverage exceeds some threshold
Example that sends a response transaction from the driver back to the uvm_reg_adapter
Example that uses a frontdoor sequence to pass a response object back to the register
sequence that called read/write
Example of a parameterized interface generated from an Easier UVM interface template file
Example that pulls in a user-defined parameterized interface

http://www.doulos.com/knowhow/sysverilog/uvm/easier_uvm_paper_2014/dvcon2014_download.php
https://groups.google.com/d/forum/easier-uvm
http://www.edaplayground.com/x/65x
http://www.edaplayground.com/x/5ib
http://www.edaplayground.com/x/5Rv
http://www.edaplayground.com/x/BtU
http://www.edaplayground.com/x/SFy
http://www.edaplayground.com/x/3e6J
http://www.edaplayground.com/x/sDH
http://www.edaplayground.com/x/2CnF
http://www.edaplayground.com/x/7_S
http://www.edaplayground.com/x/DrS
http://www.edaplayground.com/x/4vf
http://www.edaplayground.com/x/4vf
http://www.edaplayground.com/x/5KbL
http://www.edaplayground.com/x/5sNi

