

Random Stability in SystemVerilog

Doug Smith

Doulos
Austin, Texas, USA

www.doulos.com
doug.smith@doulos.com

ABSTRACT

A common problem that arises with constrained random verification is reproducing random
stimulus for verifying RTL bug fixes and locking down test stimulus for regressions. In Sys-
temVerilog, this is referred to as random stability, which is both a function of thread locality and
hierarchical seeding. This paper discusses random stability, especially the use of good random
seeds and locking down random number generator (RNG) seeding for test reproducibility. In
addition, the RNG seeding employed in the leading verification methodologies like VMM,
OVM, and UVM will be examined, tested, and critiqued, highlighting the strengths and gotchas.

SNUG 2013 2 Random Stability

Table of Contents
1	 INTRODUCTION .. 3	
2	 RANDOM NUMBER GENERATORS ... 4	
3	 RANDOM SEEDING ... 5	

3.1.	 SEEDS TO AVOID ... 5	
3.1.1.	 Zero ... 5	
3.1.2.	 Limited range of seed values ... 5	
3.1.3.	 Time and date .. 6	
3.1.4.	 $RANDOM .. 6	
3.1.5.	 $random to seed $random ... 7	

3.2.	 WHAT MAKES FOR A GOOD SEED? ... 7	
3.3.	 HIERARCHICAL SEEDING IN SYSTEMVERILOG .. 8	

3.3.1.	 Simulator differences ... 10	
3.4.	 LOCKING DOWN THE SEED .. 11	

3.4.1.	 Controlling the creation of hierarchical elements .. 12	
3.4.2.	 Using a template (atomic) stimulus generator .. 12	
3.4.3.	 Manually seeding .. 13	

4	 EVALUATION OF RANDOM STABILITY IN THE LEADING METHODOLOGIES 14	
4.1.	 VMM ... 14	

4.1.1.	 Suggested enhancements ... 15	
4.2.	 OVM / UVM .. 15	

4.2.1.	 Suggested enhancements ... 16	
5	 CONCLUSION ... 16	
6	 ACKNOWLEDGEMENTS .. 17	
7	 REFERENCES ... 18	

Table of Figures

Figure 1: Hierarchical seeding of structural elements in a SystemVerilog simulation. 8	
Figure 2: Seeding of processes inside of a structural element. ... 9	
Figure 3: Hierarchical seeding of objects. .. 10	
Figure 4: How to lock down the random seed using a template object. 12	
Figure 5: How a statically declared initializer is seeded. .. 13	

SNUG 2013 3 Random Stability

1 Introduction
Over the years, random test stimulus has proven itself to be very effective at rapidly uncovering
design bugs; in particular, exhaustively exploring a design’s state space to hit those hard-to-find,
corner-case scenarios. So the quality of the random stimulus is important in order to achieve a
high degree of confidence that a design has been well tested. As a side effect of using random
stimulus, there is the potential that test cases may become irreproducible.

Random stimulus relies upon the use of a random number generator (RNG). Of course, all
RNGs strive to produce statistically proven, truly random numbers, but the reality is that not all
RNG algorithms are created equal. They do share in common a starting point, which we call a
random seed. While the algorithms may produce statistically proven random numbers, the algo-
rithms themselves are quite deterministic. This is necessary if the random sequence of numbers
is to be reproduced—an essential requirement for any verification effort for testing design bug
fixes. Provided the same seed is given to the RNG, the same sequence of random numbers will
be generated. Upon generating a random number, the seed is updated with the next value in the
sequence so subsequent calls generate new random values.

Where engineers encounter difficulty in a random stimulus-based testbench environment is en-
suring that the random number generation is seeded in a consistent and reproducible way. Un-
fortunately, modifications to a testbench often have the unpleasant side effect of changing the
seeding, and therefore, altering the test stimulus so that the original failure is no longer reproduc-
ible.

In SystemVerilog, this behavior is referred to as random stability. Random stability relies upon
two factors: (1) thread locality, and (2) hierarchical seeding. Thread locality refers to the fact
that calls to the random number generator in each thread or process are independent of all other
calls in other threads. In other words, each SystemVerilog process (thread) process has its own
independent random number generator so that the sequence of random numbers generated in a
process is only affected by its own calls to the random number generator, and all other calls for
random numbers have no effect on it. Likewise, each process receives its own individual seed
through the process of hierarchical seeding, which means that seeds are passed down from one
simulation element to the next as each element is created.

While thread locality solves most of the random-stimulus reproducibility issues since each thread
is independent of each other, hierarchical seeding is crucial to get right if test cases are going to
be reproducible. Some elements in a SystemVerilog simulation always receive the same seed,
but most have the potential for unexpected seed changes. How SystemVerilog and the leading
verification methodologies handle their seeding, is, in fact, the subject of this paper. In the fol-
lowing sections, a brief look at random number generators will be presented along with an in-
depth explanation of the random seeding in a SystemVerilog environment and how to ensure it
does not change. In light of this information, the leading SystemVerilog verification methodolo-
gies like VMM and UVM will be evaluated, highlighting their random stability shortcomings
and strengths, and offering some helpful suggestions to make the methodologies even more ro-
bust.

SNUG 2013 4 Random Stability

2 Random Number Generators
The need for random numbers has been around since the beginning of computing for such things
as simulating natural phenomena, random sampling, Monte Carlo simulations, etc. so it is no
surprise that random number algorithms date back as far as 1939 to mechanical machines used to
create tables of random numbers. John von Neumann suggested one of the first computer algo-
rithms in 1946 called the “middle-square” method. This method squared a previous random
number and took the middle digits out of it. While this seems reasonable, it has the problem that
it tends to repeat elements and propagate them from one number to the next like zero, which con-
tinues to perpetuate itself in a sequence. [4]

Later, a simple algorithm known as the multiplicative linear congruential generator (MLCG or
LCG) was introduced by Lehmer in 1948. It could be summarized as,

Xn+1 = (a Xn + c) mod m

where X0 is the starting value (the seed), a is the multiplier (usually a large prime number), c is
the increment, and m represents the range the random number should fall in. For years, the LCG
algorithm was considered adequate for most applications, and it became the standard implemen-
tation for most operating system’s random function calls, including the standard C and C++ li-
braries. Unfortunately, the numbers it generates tend to correlate too closely to each other. In
fact, instead of hitting all the random numbers in a specified state space, the numbers tend to lie
upon correlated “planes.” For example, generating numbers in the range space of 232, there are
only 1600 planes where the numbers will tend to lie, meaning that you may only be generating
test scenarios that only hit a small fraction of the total space. Likewise, the least significant bits
are less random than the most significant bits[7]. Lastly, poorly written LCGs tend to repeat
numbers in the sequence, usually with a short periodicity.

More recently, algorithms based on a linear feedback shift register like the Mersenne twister al-
gorithm have proven much more robust without the short repeating period of the LCG and LSB
issues. Such algorithms should be used when testing critical applications that depend on good
quality random stimulus such as cryptology. Interestingly, the GNU library uses a LCG algo-
rithm for numbers 32-bits or less, and a LFSR algorithm for all others. In their book, Numerical
Recipes 3rd Edition, William Press et ali. present what they call their “suspenders-and-belt, full-
body-armor, never-any-doubt-generator” in just a few short lines of code, which offers an alter-
native quick and robust solution[7].

When Verilog was introduced as an IEEE standard in 1995, a random number generator was
provided by the system call to $random. At the time, $random was platform dependent because
it invoked the C library’s rand function. In Verilog-2001, the uniform random number function
was published as part of the standard, and it is now included in appendix N of the IEEE 1800-
2009 standard[1]. The source for $random and all the $dist_* functions are included. This
provides a standard way of generating random numbers so that test results can be replicated

SNUG 2013 5 Random Stability

across simulators. Unfortunately, the algorithm used is not very sophisticated; in fact, it is the
same one used in Verilog-XL and it appears to be a form of some kind of linear congruential
generator, having vestiges of by-gone days such as using a small prime number like the one used
in the old Vax glibc MTH$RANDOM function and an antiquated use of a floating point to inte-
ger conversion in the algorithm.

More worth using are the several new random functions provided by SystemVerilog— $uran-
dom, $urandom_range, and randomize. Unlike the old Verilog $random, the standard does
not dictate the implementation for these functions. Instead, engineers rely on the EDA vendors
to provide suitable and robust random number generators. For applications particularly sensitive
to random stimulus (such as encryption), linking in high-quality RNG algorithms through the
DPI would probably offer better test results and verification confidence. See [7] for suggestions
on what RNGs to never use, and [5] for a very high quality random number generator.

3 Random Seeding
If we want to use all the random constraint syntax in SystemVerilog, then there is little we can
do to control the quality of the random number generator algorithm since that is implemented in
the simulator. What is within our control is how well we seed the randomization. While all
seeds should be valid (except for perhaps 0) and produce equally random results, it does not
mean that all seeds are good to use. For example, repeating the same seeds over and over again
only limits the amount of state space tested, and using successive seeds or seeds based off of
each other tend to produce results that are correlated to each other in some way.

3.1. Seeds to avoid
3.1.1. Zero
The simplest seed to avoid is 0. Linear congruential random number generators get stuck using
zero[2]. The Park and Miller RNG algorithm proposed in [6] has been the minimal standard for
random number generators for years, and their algorithm does not work with a seed of 0. There-
fore, it is probably wisest to steer clear of zero since EDA vendors do not typically disclose their
RNG algorithms.

3.1.2. Limited range of seed values
A limited range for seed values will produce a limited range of random sequences. For example,
using a 1-byte seed limits the possible seeds values to 256. Consequently, there are only 256
random sequences that would ever be generated.

SystemVerilog uses an ‘int’ or 32 bits to seed its randomization (see srandom in [1]). That
means there are 232 or 4294967296 possible seed values. Often seeds are chosen using a limited
range such as a Unix process ID (pid). While 32-bit operating systems typically use an int for
their process IDs, most kernels limit the pid range to something much more human readable like
215-1 or 32767. Once the max value is hit, the process ID rolls back around to 0. Recall the last
time you ever saw a process ID reach 4294967296?! Using a limited pid like this means there
are only a potential 32768 random sequences, or 4294934530 possibilities never explored!
Therefore, avoid using a seed generator source that generates numbers less than 32 bits.

SNUG 2013 6 Random Stability

3.1.3. Time and date
By far, the most common method for seeding a simulation is to use the time and date. While this
creates what appears to be a unique number, there is very little variation in the seeds. For exam-
ple, consider the following seed created from the time 16:31:51 and date March 28, 2013. A
seed can be generated several ways from this, but for illustration purposes consider the straight-
forward appending of all the digits:

 16315103282013

This is a large number, but consider how often during the course of running regressions for a
project do the values actually change. It takes 365 days before the year changes, which means
every seed used on a project will have the same year in the seed unless the project rolls into the
next year. Even then, there is typically only a 1-digit variation in the number. Likewise, the
month takes 30-31 days to vary, the days of the month repeat every 30-31 days, and as creatures
of habit or by virtue of cron jobs, our simulation regressions tend execute near the same time
every day. In other words, the seeds used are not really random, they all relate to each other in
some way, and typically have repeating or practically fixed digits in them. Likewise, there are
only 60 seconds in an minutes, 60 minutes in an hour, 24 hours in a day and so on, so what about
the values from 61-99 for seconds and minutes, and 25-99 for hours? Even if the standard C
time is used—number of seconds since January 1, 1970—then that is even worse since only the
least significant bits of the seed ever vary.

Using the time and date greatly limit the random state space exploration. Only a very small sub-
set of the possible seeds are ever touch, and they all correlate to each other, which further reduc-
es the state space explored. Sometimes, they may even overlap if just the time of day is used.
These issues remain even if the time and date are appended with another “random” value such as
the process ID.

Lastly, in this example the time and date generated a 14 digit number—always. What about
seeds with other digit lengths? Recently, an engineer admitted to me that his regressions where
not finding many bugs. Then it dawned on him and his team that their regressions always exe-
cuted at the same time of day and they used the time and date for a seed. Once they moved to a
truly random seed, all sorts of bugs were uncovered as tests began to hit new corner cases!

3.1.4. $RANDOM
One of my favorite ways to generate a random seed for a regression is using the bash shell’s
built-in $RANDOM variable. Reads of this variable trigger a call to bash’s implementation of the
Park and Miller algorithm[6], which is a tried and true RNG. It could not be easier to pass a dif-
ferent random seed for each regression test to the simulator than passing in $RANDOM.

While bash’s algorithm is adequate, its seed generation is not. Bash uses the time of day (se-
conds and microseconds) plus the process ID. Subshells are seeded with just the process ID.

SNUG 2013 7 Random Stability

Issues with these two methods are described in the previous two sections. Even if the seed were
better, or the seed is overwritten by assigning to RANDOM, the results are very limited. Bash
masks off the upper 32 bit number it generates into a 15-bit value between 1 and 32767.

Korn shell also provides a $RANDOM, but it relies on the poorly written C library functions rand
and srand; therefore, it is not advisable to use it.

3.1.5. $random to seed $random
One of the problems with linear congruential generators is that when seeded with another ran-
dom call to the same RNG, the results show a strong correlation with each other [3]. Using a
statistical test suite that tests a billion bits of random data against random number generators
used in cryptographic applications, test results show that using a LCG to seed another LCG gives
statistically poor results[5]. Therefore, using SystemVerilog’s $random to seed another call to
$random would make a poor choice of seeds.

3.2. What makes for a good seed?
A good seed should really have the following characteristics:

(1) Generated from a random source
(2) The random source should not be from the generator being seeded (so the results do not

correlate with each other)
(3) Not limited to a small subset of values (like time and date)
(4) Ideally, from a source that relies on physical randomness
(5) As many bits as possible (SystemVerilog uses 32 bits so not limited to 215 bits)

The easiest way to generate a good random seed is to use a random number generator that uses
randomness from an actual physical source, which is generally referred to as a “truly” random
number generator (however, it is hard to get true randomness in a computer since they are de-
signed to be predictable). For example, clock jitter in a system (though clocks tend to not be the
best source), white noise on an audio port, or sporadic timings between keyboard and mouse
entries[2]. A readily available source for random numbers in a Unix system is /dev/urandom.
Urandom uses entropy pools inside of the system kernel and regularly injects into the pools ran-
dom jitter measurements from the kernel. While not a purely random source, it does provide
statistically good results for random numbers.1 Urandom can be read with the following Unix
commands:

1 % head -4 /dev/urandom | od -N 4 -D -A n | awk '{print $1}'

1 Statistical tests performed by [5] show that /dev/urandom produces medium quality results since /dev/urandom is
subject to uniformity flaws. However, this is should be adequate enough for most regression testing.

SNUG 2013 8 Random Stability

Another decent source for a seed would be calling the BSD glibc function random. Random
uses a LSFR approach and should produce acceptable seeds for verification purposes. Such a
call to random could be invoked from the DPI and passed into the SystemVerilog srandom
function.

3.3. Hierarchical seeding in SystemVerilog
Beyond the choice of initial seeds, how the elements in a SystemVerilog simulation are seeded
will determine the random stability of our testbench environment. SystemVerilog ensures that
each thread has its own random number generator so that calls to the RNG are independent from
each other. Again, this is referred to as thread locality. The tricky part is ensuring that every
thread always gets seeded in the same way so changes to the testbench environment do not make
test results irreproducible.

By default, seeds are passed down from structural elements to their processes. Statically elabo-
rated constructs, referred here as structural elements, include modules, interfaces, programs, and
packages2. This seeding approach is termed hierarchical seeding. The initial seed of the simula-
tor is either passed in as a command line argument or set to an arbitrary default value. This ini-
tial seed becomes the seed of each structural element as shown in Figure 1.

Figure 1: Hierarchical seeding of structural elements in a SystemVerilog simulation.

Hierarchically seeding protects the simulation from being irreproducible when adding new mod-
ules to a testbench or design.

Within structural elements (save packages), processes exist like always or initial blocks.
The SystemVerilog standard requires that each process (or thread) has its own independent ran-

2 Packages are not technically “structural” since they are neither instantiated nor have hierarchy.

Simulator S0

 module S0

Structural(elements(are(seeded(
with(the(ini1al(seed(of(the(simulator(

Structural(RNG(

 package S0

 program S0

 interface S0

SNUG 2013 9 Random Stability

dom number generator and is seeded with the next random value from its parent—either the par-
ent module or its parent process as in the case of a dynamic fork statement[1] (see Figure 2).

Practically, this means adding a new process inside a module could potentially alter the order
that the processes are seeded. This is where the random “instability” enters into a testbench. If
someone alters the order that random calls are made within a process, then the random sequence
will be changed, which is the expected behavior of a RNG. However, if someone decides to
simply add a new initial block, even though each process is theoretically independent, the
new initial block could change previous test results because the seeding of the processes may
change, altering the previous random sequence. This is, in fact, a common gotcha that many
engineers encounter. Fortunately, the standard mandates that seeding must happen deterministi-
cally, effectively from top to bottom inside of a module. Therefore, if a new process is added at
the bottom of a module, then it should not affect the seeding of any previously defined process
blocks.

Figure 2: Seeding of processes inside of a structural element.

In class-based testbenches, objects will represent the components in the testbench and generate
the random stimulus that passes into the design. In order to ensure random stability, each object
also must have its own independent random number generator, and consequently, its own seed so
previous random stimulus can be reproduced. The SystemVerilog standard requires that objects
be seeded with the next random value from their parent thread as shown in Figure 3.

Simulator S0

 module S0
initial S1

always S2

Process'RNG'

initial S1

initial S2

initial S3
Processes'are'seeded'with'the'next''
random'value'of'their'parent'thread'

Structural'RNG'

for
k'

fork'

S2

S3

S4

S5

fork'

fork'

S3

S4

S5 module S0

SNUG 2013 10 Random Stability

Figure 3: Hierarchical seeding of objects.

Again, where random “instability” enters into a testbench is when changes to the order that ob-
jects are created happens within a thread of execution due to modifications to the testbench. For
example, instantiating new components before existing ones could cause the objects’ initial seed-
ing to change, resulting in a new sequence of random stimulus. Likewise, creating new transac-
tion objects could also affect the seeding of subsequent objects.
3.3.1. Simulator differences
Unfortunately, the SystemVerilog standard[1] is slightly ambiguous on how hierarchical seeding
works. For example, the standard says in section 18.14.1, “An initialization RNG shall be used
in the creation of static processes and static initializers,” and that, “Each initialization RNG is
seeded with the default seed.” However, it subsequently says that static processes (e.g., initial,
always, fork..join) are seeded with the “next value from the initialization RNG of the module
instance, interface instance, program instance, or package containing the thread declaration.”
For that reason, it is not clear if static processes should be initialized using the default seed (i.e.,
initialization RNG) or seeded from the parent module? Likewise, is the “next value from the ini-
tialization RNG” interpreted as the next random value generated by the module’s RNG or simply
the seed that the module was seeded with?

The author interprets the standard as intending static processes (initials, always, and fork..joins)
to be seeded with the next random value of the containing module’s RNG. Sadly, none of the
major simulators interpret the standard quite the same way. SystemVerilog’s get_randstate
function reveals each simulator’s hierarchical seeding:

2 module test;
3
4 process m = process::self();

Simulator S0

 module S0

initial S1

initial S2

Process'RNG'Structural'RNG'

for
k%

fork%

S2
new% S3

S4

S5

Object'RNG'

S4

S5

S3
new%

SNUG 2013 11 Random Stability

5
6 initial begin
7 process p;
8 p = process::self();
9
10 $display(“Module randstate = ”, m.get_randstate());
11 $display(“Process randstate = ”, p.get_randstate());
12 end
13 endmodule

For example, the latest version of Questa initializes all static threads to the same initial value
instead of the next random value of the containing module. VCS initializes static threads with
the next random value of the module’s RNG, but initializes all statically declared objects with
the same seed instead of the next random value in the module’s RNG. Incisive simulator initial-
izes all static processes with different random values. None of these implementations follow the
standard exactly. While it is frustrating that simulators are not more consistent for portability
purposes, these minor inconsistences should have little affect on test reproducibility provided the
simulators consistently follow their chosen method.

3.4. Locking down the seed
With so many initial seeds throughtout a testbench, there is little wonder why testcases can be-
come irreproducible. Random instability typically creeps in from one of the following causes:

(1) A change in the order of random calls with a process
(2) Insertion of new processes before previously defined ones
(3) A change in the order of creation of forked processes
(4) A change in the order of object creation

In practice, this means that even a small or subtle change can affect test results. Unfortunately,
there is no absolute way to guarantee that random test results will never become irreproducible.
The reason is because the random seeding can always be messed up. Except for certain Sys-
temVerilog random functions like $random, $dist_uniform (and all $dist_* functions),
which have a user provided seed as an argument, the other random functions like $urandom,
$urandom_range, and randomize are hierarchically seeded. Therefore, nothing stops a user
from inserting additional RNG calls before existing calls, thereby altering the seed and the result-
ing random sequence.

So while we cannot guarantee reproducibility if the test stimulus is modified, we can guarantee
reproducibility if the testbench is modified. To do so, we need to somehow lock down the seed-
ing of each hierarchical element in the testbench so that the same random sequence can be recre-
ated. The simplest way to accomplish this is to either: (1) carefully control the creation of
testbench elements, (2) use a template generator and deterministically seed it, or (3) manually
seed each hierarchical element.

SNUG 2013 12 Random Stability

3.4.1. Controlling the creation of hierarchical elements
To control the creation of simulation elements, you could prohibit adding new processes (usually
initial blocks) or new object instantiations. Such a policy would be impractical, of course,
since testbench changes are inevitable. However, as long as new processes and object instantia-
tions are added after existing code, then simulation elements should continue to be seeded in the
same order and preserve the random stimulus. Enforcing this policy may be difficult with multi-
ple testbench developers so one of the following approaches may be more useful.
3.4.2. Using a template (atomic) stimulus generator
One way to control SystemVerilog’s hierarchical seeding is to create template objects, which are
used to generate all the random stimulus. As long as all calls to the random number generator
are only made via the template object(s), then the order of random seeds will be preserved since
SystemVerilog guarantees object random stability. Likewise, if the template object is initially
seeded in a control manner, then changes to the rest of the testbench will not affect it. An easy
way to control the seeding of a template object is to restrict the verification environment to one
initial block, which always gets the same seed, and then create the template object first thing at
time zero before any other calls to new or the RNG. This will ensure that the template will al-
ways be seeded with the same random value as shown in Figure 4.

Figure 4: How to lock down the random seed using a template object.

An even easier approach would be to use a statically declared initializer. A statically declared
initializer is an object created at time zero by using a call to new in a variable initialization. For
example,

14 package my_pkg;

Simulator S0

 module S0

Process'RNG'Structural'RNG'

for
k%

fork%

S2
new% S3

S4

S5

Object'RNG'

S4

S5

S3
new%

S2

initial S1

.randomize()%

Randomize'and'copy'
only'the'template'
to'preserve'the'

random'sequence'

Only'one'ini=al'block'
so'always'the'same'

ini=al'seed'

new%

Template'object'created'
first'thing'at'=me'zero'so'
always'the'same'seed'

.clone()%

SNUG 2013 13 Random Stability

15 class test;
16 …
17 endclass
18
19 test t = new(); // Statically declared initializer
20
21 endpackage

The standard requires that these objects be seeded with the “next random value of the initializa-
tion RNG of the module instance, interface instance, program instance, or package in which the
declaration occurred.” Provided no additional static processes or initializers are added before the
variable declaration, then the object will always be initialized with the same seed (Figure 5).

Figure 5: How a statically declared initializer is seeded.

3.4.3. Manually seeding
The only way to really guarantee that a testbench environment is impervious to changes is to
manually seed all processes and created objects. SystemVerilog provides two ways to control
the random seeding: (1) srandom, and (2) set_randstate. To seed a process, srandom is
called on a process object with a 32-bit integer seed:

22 initial
23 begin
24 process::self.srandom(1234); // initial block seed=1234
25
26 fork
27 begin
28 int x;
29 process::self.srandom(1); // Forked process seed=1

Simulator SN

 module SN

SN+1

.randomize()-
Randomize*and*copy*
only*the*template**
to*preserve*the*

random*sequence*

Sta7c*declara7on*ini7alizer*
(variable*ini7alized*with*new)*

in*module*or*package*

new-

Template*object*created*
at*7me*zero*with*next*seed*

.clone()-

 package SN

new
-

SNUG 2013 14 Random Stability

30 x = $urandom;
31 end
32 …
33 join
34 end

Seeding an object simply requires invoking srandom on the object:

35 initial
36 begin
37 my_test t = new;
38 t.srandom(6789); // Test object seeded with 6789
39 end

The second approach to seeding an object is using get_randstate and set_randstate.
These methods are invoked just as srandom on a process object. The get_randstate method
returns the current RNG state for a given object, returning an implementation-specific string.
For example, VCS returns a string like this:

00Z1ZZZ1Z0ZZ11XZX11Z1ZX1XZ1Z0X01XZZZZZXZXZXZZZZXXXXZZXZZXXZZXXZZ

or

0000000000000000000000000000000000110101010001011001101111110100

The set_randstate function receives this implementation-specific string. The disadvantage
of using the get_/set_randstate methods is that every simulator uses a different format for
its string. Practically, it is only useful within a simulation to save the RNG state at the beginning
of a test run and then for later restoring it when the test case is restarted.

4 Evaluation of random stability in the leading methodologies
When developing a verification methodology, it is important to consider the random stability and
how to ensure test reproducibility. Both the initial seeding and the hierarchical seeding are im-
portant for reproducibility and achieving good test coverage across the design’s state space.
Therefore, it is important that the leading industry verification methodologies follow a robust
approach for random seeding. The following section will evaluate the strengths and weaknesses
of the random seeding methods for VMM and OVM/UVM.

4.1. VMM
VMM 1.2.2b provides no built-in mechanism for setting an initial seed. Instead, the initial seed
is set using a simulator specific option on the command line and then passed into the testbench
components according to SystemVerilog’s defined hierarchical seeding method. Since srandom

SNUG 2013 15 Random Stability

is not used on any of the testbench objects, simple changes in the order that processes are created
or objects are instantiated easily causes a VMM environment to become irreproducible due to the
change in the seeding.

However, VMM does use the get_randstate and set_randstate functions so that test cas-
es can be reset and restarted with the same initial seed and reproduce the same stimulus. This
only works within a simulation run, but does not help across different simulation runs where the
testbench environment has been changed.

VMM also favors the idea of a data factory where a template can be used to generate repeated
stimulus. Data factories or template generators can help avoid reproducibility issues provided
the template object is always seeded first in a known order. If, however, the order that objects
are created is accidentally changed, then random stability of the environment is compromised.

4.1.1. Suggested enhancements
VMM could significantly enhance its random stability by manually seeding all VMM objects in
their constructor call using srandom. A reproducible and robust seeding algorithm would be
required in order to generate the initial seeds. Until changes are made to VMM, users can manu-
ally seed their own objects, which would lock down their testbench seeds.

Likewise, VMM would benefit from a command line argument such as VMM_SEED so that the
seed can be easily passed into the testbench and then used for seeding all the other VMM objects.
A static initializer in a package could be used to capture that initial seed and then used to seed all
other objects in the testbench.

4.2. OVM / UVM
OVM and UVM share an identical random seeding methodology. OVM/UVM use a global ran-
dom seed that is set inside a package by a call to $urandom:

40 int unsigned uvm_global_random_seed = $urandom;

Since packages always get initialized with the default initial seed and this is the only RNG call in
the package, the global seed can be consistently set to the same value every simulation run.
When an OVM/UVM component is created, a flag called use_uvm_seeding is checked to de-
termine whether SystemVerilog’s hierarchical seeding is used or OVM/UVM’s seed generation
hashing algorithm. By default, components are seeded using OVM/UVM’s hashing function,
which generates a unique seed based on a component’s data type, full instantiated path, and the
global seed. The hashing function uses a CRC algorithm to avoid collisions and uniquely seed
each instance.

While each component is manually seeded, seeding can still be affected by changes to the envi-
ronment. Changes to a component’s instance name will change the generated seed for the com-
ponent and any component hierarchically beneath it. OVM/UVM’s seeding algorithm uses a

SNUG 2013 16 Random Stability

component’s full hierarchical pathname so any modifications at the top with affect pathnames
through a testbench environment. Likewise, changes to the component’s class name will change
the generated seed. Realistically, however, component class names will probably never change
once created, though instance names may. Therefore, it is advisable to not touch the hierarchical
naming once a testbench environment has been setup. Adding additional component instantia-
tions has no affect on existing components, which accomplishes the goal of random stability in
the testbench environment.

Transactions (sequence items) and sequences are also manually seeded, but they have no hierar-
chical path so their instance name is just the simple name passed into the constructor. Of course,
making changes to a testcase’s stimulus makes the test scenario potentially irreproducible; how-
ever, OVM/UVM’s seeding method makes changes to test stimulus on different interfaces,
which use different transaction objects, independent of each other.

4.2.1. Suggested enhancements
There are a couple improvements that could be made for OVM/UVM’s random stability meth-
odology. For starters, OVM/UVM could provide a command line argument for passing in an
initial random seed. Currently, all the simulators have proprietary command line options so there
is no standard way for setting the initial seed. Likewise, there is no standard way in SystemVeri-
log to determine the simulator’s initial seed since get_randstate provides an implementation-
specific string. Having a command line option would not only provide a portable option, but it
would allow OVM/UVM to display the initial seed in a standard way into the log file so seeds
can be easily extracted and passed in again to reproduce the test stimulus. The OVM/UVM
global seed could be set using $urandom(UVM_SEED) instead of just $urandom.

Another possible improvement would be to separate the random seeding in OVM/UVM from an
object’s hierarchical name. While this method helps to uniquify the random seed, any changes to
the instance names can affect test case reproducibility. However, without using the instance
name, the hashing algorithm uses the order of creation to unquify the seeds. So either way, spe-
cific changes to a testbench can affect the hierarchical seeding. Unfortunately, there is no easy
workaround for this except to seed each objects of the same type with the same seed. While this
is a valid approach, it may not result in the best random results.

5 Conclusion
Random stability is important in any testbench environment. In SystemVerilog, there are three
simple methods that can guarantee random stimulus reproducibility: (1) control the order of pro-
cess and object creation, (2) isolate the random seeding by using a template stimulus generator,
or (3) manually seed each testbench element. Controlling the order of creation is not only diffi-
cult to manage and regulate, but all the simulators seed testbench elements in a non-standard
way. Using a template stimulus generator works well, but real-world stimulus typically requires
more than just a stream of random data; rather, designs require specific sequences of transactions
such as provided by VMM’s scenarios or OVM/UVM’s sequences. The best way to ensure ran-
dom stability is to manually seed each simulation element. The only concern with this approach
is ensuring that a robust seeding algorithm is used.

SNUG 2013 17 Random Stability

There are several improvements in the SystemVerilog standard that could be made for random
stability. First, section 18.14.1 on random stability needs clarification so all the simulation ven-
dors implement the same hierarchical seeding. The archaic RNG implementations for the $ran-
dom and $dist_* functions should really be updated with a more robust algorithm. Also, it
might be worth considering enhancing the random functions in SystemVerilog to use 64-bits
instead of 32-bits.

Considering the leading industry methodologies, a standardized way to pass in an initial seed on
the command line would help with portability and for recording the random seed to a log file for
reproducing test cases. VMM in particular, does a good job locking down the seeds within a
simulation for restarting a testcase, but does not offer any other kind of random stability between
separate simulation runs. VMM would greatly benefit from using srandom to seed the
testbench processes and objects. OVM and UVM do a good job at random stability.

Another possible improvement to help all the methodologies is to provide some additional ran-
dom functions via the DPI interface. DPI functions could offer 64-bit RNG functions as well as
provide better RNG algorithms like those provided with the C++’s Mersenne twister engine or
any of C++’s 20 random distribution functions. Another useful DPI function would be to gener-
ate a truly random seed, which could be used to initially seed a VMM/OVM/UVM simulation if
nothing is provided on the command line. As discussed in Section 3.2, /dev/urandom provides a
good source for random data in a Unix environment and could be easily read in C:

1 int myRandomInteger;
2 int randomData = open("/dev/urandom", O_RDONLY);
3 read(randomData, &myRandomInteger, sizeof myRandomInteger);
4 close(randomData);
5 return (myRandomInteger);

With some basic policies, using an industry methodology like UVM essentially eliminates con-
cerns for random stability in a testbench environment. Separate from the methodology is the
initial seed passed into the simulation. Without a good initial seed, test stimulus only hits a lim-
ited part of the design’s state space. Limited seeds like date and time should be avoided while
seeds from a good random source are essential for good test coverage. A robust methodology
combined with a good source for initial seeds provides for a verification environment that is
change-resistant and apt to produce high-quality results.

6 Acknowledgements
Any trademarks or other proprietary names mentioned in this paper are acknowledged as the
property of their respective owners.

SNUG 2013 18 Random Stability

7 References

[1] "IEEE Standard for SystemVerilog - Unified Hardware Design, Specification, and Verification Language,"
IEEE Std 1800-2009, 2009.

[2] Garfinkel, Simpson, Gene Spafford, and Alan Schwartz. Practical Unix and Internet Security. 3rd Edition,
O’Reily Publishers, 2003.

[3] Jain, Raj. “Random Number Generation”, Presentation, University of Washington, 2006. Available online at
http://www.cse.wustl.edu/~jain/cse567-06/.

[4] Knuth, Donald. Seminumerical Algorithms: The Art of Computer Programming. Vol. 2, Addison-Wesley Pub-
lishing Company, Reading Massachusetts, 1969.

[5] LavaRnd, http://lavarnd.org.
[6] Park, Stephen H. and Keith W. Miller. “Random Number Generators: Good One Are Hard To Find,” Commu-

nications of the ACM, Vol. 31(10), October 1998, p. 1192-1201.
[7] Press, William H., Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery. Numerical Recipes 3rd Edi-

tion: The Art of Scientific Computing. Cambridge University Press, New York, 2007. Available online at
http://www.nr.com.

[8] -----. Numerical Recipes in C: The Art of Scientific Computing. 2nd Edition, Cambridge University Press, New
York, 1992. Available online at http://www.nr.com.

[9] "UVM Reference Manual Version 1.1c", Accellera, 2012.

