
Using bind for Class-based Testbench Reuse with Mixed-

Language Designs

Doug Smith

Doulos

Morgan Hill, California, USA

doug.smith@doulos.com

ABSTRACT

Significant effort goes into building block-level class-based testbenches so reusing them in

a full-chip environment has great advantages. The problem arises of which way is best to

connect them into a full-chip environment that maximizes reusability. VHDL or mixed-

language designs pose greater challenges because hierarchical references are unsupported

in VHDL. Alternatively, SystemVerilog offers a simple solution with the bind command.

Using bind and a few simple guidelines, a block-level testbench can be reused without

modifications in a mixed-language full-chip environment. This paper demonstrates how to

structure a testbench for effortless reuse with nothing more than a single bind command.

SNUG 2009 2 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Table of Contents

1 INTRODUCTION ...5

2 CLASS-BASED TESTBENCH REUSE...5

2.1. VIRTUAL INTERFACES ..7

3 BLOCK-LEVEL TESTBENCH REUSE..8

3.1. HIERARCHICAL REFERENCES ..9

3.2. CHALLENGE OF MIXED-LANGUAGE DESIGNS ..10

4 USING BIND ..10

4.1. TESTBENCH STRUCTURE...11

4.1.1. Binding signals to ports..12

4.1.2. Connecting the ports to the interface ...13

4.1.3. Port directions..14

4.2. CONDITIONAL COMPILATION..16

4.3. CONFIGURABLE VERIFICATION COMPONENTS ..17

5 REUSE IN FULL-CHIP TESTCASES...19

5.1. OVM ENVIRONMENTS ...19

5.2. VMM AND OTHER ENVIRONMENTS..20

5.3. VMM AND OVM INTEROPERABILITY..22

6 PUTTING IT ALL TOGETHER...23

7 CONCLUSIONS ...25

8 ACKNOWLEDGEMENTS...26

9 REFERENCES ..26

SNUG 2009 3 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Table of Figures

Figure 1. Typical class-based testbench. ...6

Figure 2. A typical class-based testbench consisting of a top-level module, interface, DUT, and testbench

objects...7

Figure 3. An example use of a virtual interface passed into the testbench constructor.8

Figure 4. Block-level testbench reused in a full-chip environment. ...8

Figure 5. Use of assign statements to connect the block-level testbench to the design unit in the full-

chip testbench. ..9

Figure 6. Signal aliasing using clocking blocks. ...10

Figure 7. Binding the block-level testbench inside the full-chip design. ..11

Figure 8. Accessing bound interface in full-chip environment from within the block-level testbench.11

Figure 9. Binding the block-level testbench into the full-chip design. ...11

Figure 10. Port connections specified in the bind statement. ...12

Figure 11. Design ports added to block-level testbench. ..12

Figure 12. Named mapping of ports in the bind statement...12

Figure 13. Diagram of the block-level testbench bound inside the full-chip design...................................13

Figure 14. Automatic port mapping of the block-level testbench ports to the interface.13

Figure 15. Named port mapping of block-level testbench ports to the interface.13

Figure 16. Interface example using multiple clocking blocks and inouts for signals no longer driven by

the block-level testbench drivers. ...15

Figure 17. Local variables initialized to high impedance in order to avoid driver conflicts.......................16

Figure 18. Generate statements used to conditionally instantiate the design and glue logic.16

Figure 19. Bind statement using a parameter to conditionally instantiate components.17

Figure 20. Parameterized class-based testbench component...17

Figure 21. Class parameter passed to various active testbench components. ...18

Figure 22. Top module parameter passed into parameterized classes. ...18

Figure 23. Use of an active flag instead of a parameterized class to disable testbench components..........19

Figure 24. OVM example using the factory to configure a block-level testbench sequencer.20

Figure 25. Global package variable provides access to block-level testbench wherever it is bound into the

full-chip environment. ..20

Figure 26. Global static class member provides access to block-level testbench wherever it is bound into

the full-chip environment. ..21

Figure 27. Diagram illustrating how a global package variable can be used to reference a testbench

wherever it instantiated (bound)...21

Figure 28. OVM example accessing a VMM environment. ...22

Figure 29. Block-level testbench top module template. ..23

Figure 30. Testbench to DUT interface template. ...24

Figure 31. Block-level class-based environment template..25

Figure 32. Full-chip bind statement template. ..25

SNUG 2009 4 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Table of Tables

Table 1. Port directions for testbench components. ..14

SNUG 2009 5 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

1 Introduction

Full-chip verification environments rely on reuse of components and block-level
1
 environments to reduce

overall effort and increase the effective verification checking and coverage. While the reuse of individual

components has significant benefits, the reuse of entire block-level environments affords the greatest

benefits since substantial integration effort and maintenance can be avoided. Traditional approaches to

reusing block-level environments typically involve using proprietary signal access routines or hierarchical

references, which only work in Verilog-based designs or testbench environments. VHDL or mixed-

language designs pose particular challenges to integrating block-level environments since hierarchical

references are unsupported.

However, SystemVerilog[1] offers a simple, yet elegant, solution for reuse with any kind of design. This

paper presents a simple reuse methodology that is compatible with any custom or industry standard class-

based verification methodology (like VMM) and allows entire block-level testbench reuse in a full-chip

with homogeneous or mixed-language designs. Section 2 will begin by discussing how class-based envi-

ronments are typically constructed in SystemVerilog and the use of virtual interfaces to provide reusabil-

ity. Section 3 discusses the challenges of integrating a block-level testbench into an environment con-

taining VHDL components and how the SystemVerilog bind command can work-around those difficul-

ties. Section 4 then presents a simple methodology consisting of three basic guidelines to follow in order

to make a block-level environment reusable in a full-chip environment using only one bind statement.

The motivation for these guidelines is discussed as well as code examples and recommendations on using

the bind statement are given. Section 5 addresses how full-chip testcases can control and configure the

block-level environment components although the environments may be instantiated deep within a mixed-

language design. Likewise, this section details examples of using this methodology with industry stan-

dards like VMM or OVM, and even how to seamlessly mix VMM and OVM testbenches together in the

same environment. Lastly, section 6 distills the three guidelines into easy-to-follow templates for a block-

level testbench, and section 7 concludes the paper with a few remarks on tool issues to recognize.

2 Class-based testbench reuse

A class-based testbench has significant reuse advantages over a traditional module-based testbench be-

cause it offers a more flexible, dynamic, extensible, and configurable environment. Object-oriented pro-

gramming (OOP) enables testbench elements to be encapsulated into simple components that can be re-

used throughout your testbench or between multiple environments. It also provides the flexibility to dy-

namically construct your testbench environment at run-time, and structure the environment differently

based on testcase requirements.

Since object creation only occurs at run-time, all testbench environments require some structural stub such

as a module or program to dynamically create the class-based environment. A simple initial block will

suffice to create the class-based environment, but the design and interface also need to be instantiated.

1
 The term “block” used in this paper refers to the smallest divisible functional design unit typically treated as an independent

project with its own sophisticated verification environment.

SNUG 2009 6 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Connecting the design with the testbench is accomplished by passing a special reference to the interface,

called a virtual interface, to the constructor of the class-based environment.

Thus, a typical class-based environment consists of a top-level module or program that (1) instantiates the

design, (2) instantiates a SystemVerilog interface, (3) declares and allocates the testbench object, and (4)

passes a reference to the interface into the environment. Such an environment is shown in the following

figures.

module block_tb;

tb_env tb; // (3) tb_env class instance variable

apb_intf apb_bus(); // (2) Instantiate the physical interface

design dut (// (1) Instantiate the design and connect signals

.clk (apb_bus.clk),

.psel (apb_bus.psel),

.penable(apb_bus.penable),

...

);

// Now create the class-based testbench

initial begin

tb = new (apb_bus, ...); // (3)/(4) Pass reference to the interface

// called a “virtual interface”

...

end

endmodule : block_tb

Figure 1. Typical class-based testbench.

SNUG 2009 7 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Figure 2. A typical class-based testbench consisting of a top-level module, interface, DUT, and testbench
objects.

2.1. Virtual interfaces

Since virtual interfaces are references to an actual interface, they provide an excellent way of connecting a

class-based SystemVerilog testbench together with the design-under-test. A testbench refers to the design

signals without knowledge of the connections between it and the design. Therefore, interfaces that map

signals differently, include different assertions or coverage, or include additional logic like error injection

can be easily interchanged as long as they provide the same signal names to the testbench. Consequently,

testbenches using virtual interfaces can be constructed to work easily from one environment or project to

the next.

A virtual interface is declared by using the keyword virtual before an interface declaration inside of the

testbench classes as shown in Figure 3. This indicates that only a reference to the interface will be passed

into the tb_env object. When the testbench is created in the initial block by the call to new()(see

Figure 1), apb_bus is passed to the testbench’s constructor and the reference is saved locally so that it can

be distributed to the various testbench components that interact with the design such as drivers and moni-

tors.

module block_tbmodule block_tb

tb = new (apb_bus, …);tb = new (apb_bus, …);

scoreboardscoreboard

componentcomponent

componentcomponent

transactortransactor

driverdrivermonitormonitor

design dut (.pclk(apb_bus.pclk),

 .psel(apb_bus.psel),
. . .);

design dut (.pclk(apb_bus.pclk),

 .psel(apb_bus.psel),
. . .);

apb_intf apb_bus();

SNUG 2009 8 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

class tb_env;

virtual apb_intf apb_bus; // Variable to hold reference to the interface

function new (virtual apb_intf _bus);

apb_bus = _bus;

endfunction : new

...

endclass : tb_env

Figure 3. An example use of a virtual interface passed into the testbench constructor.

3 Block-level testbench reuse

Verification projects typically consist of several block-level testbenches to verify individual design ele-

ments, and a full-chip testbench environment to test both functionality and integration. The protocol

checking, coverage, and assertions monitored at the block-level are particularly useful in a full-chip envi-

ronment. So having the ability to readily reuse these components without significant effort and modifica-

tions can offer great advantages in finding bugs in the top-level testbench.

Ideally, we want to reuse the entire block-level testbench unmodified in order to maximize the benefits of

reuse; however, this is not always so straightforward. In fact, once a design module is integrated into a

full-chip design, several things in the block-level testbench become broken in a top-level environment.

For example, the block-level design no longer needs to be instantiated in the block-level testbench because

it is part of the full-chip design (see Figure 4).

Figure 4. Block-level testbench reused in a full-chip environment.

fullchip envfullchip env

scoreboardscoreboard

componentcomponent
componentcomponent

componentcomponent

componentcomponent

transactortransactor

driverdrivermonitormonitor

module

cpu

module

cpu

module

sram

module

sram

module

serial io

module

serial io

module

rom

module

rom

module

bus_arbiter

module

bus_arbiter

block_tbblock_tb

tb_envtb_env

module
serial io

module
serial io

v
irtu

a
l in

tf

Both design instances
are not needed

Clock and glue logic are not neededDriver is not needed

scoreboardscoreboard

componentcomponent

componentcomponent

transactortransactor

driverdrivermonitormonitor

interface bus_ifinterface bus_if

SNUG 2009 9 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Consequently, the interface signals of the block-level design unit need to be accessed in a different way by

the testbench (usually by hierarchical references), and active transactor/driver components are unneces-

sary since input stimulus will be driven from other parts of the full-chip design. Glue logic as well (such

as clock and reset generation logic) is unnecessary and the design clock needs to be used in the block-level

testbench.

So in order to easily reuse a block-level testbench in a full-chip, a block-level testbench must meet the

following requirements:

1. Correctly structured: it must be structured to access the design signals in either a block or full-

chip environment.

2. Conditional compilation: it must provide conditional instantiation of the design and supporting

logic (like clock and reset generation).

3. Configurable: it must be configurable such that the active transactor(s)/driver(s) can be disabled in

a full-chip environment.

If a block-level testbench follows these three simple guidelines, then it can be reused without modifica-

tions in a full-chip environment.

3.1. Hierarchical references

The first step to reuse is to structure the block-level testbench so that it can access design signals in any

kind of environment. The easiest way access signals is to use hierarchical references. Since Verilog al-

lows for multiple top modules (i.e., non-instantiated modules), both the full-chip and block-level modules

can simulate in parallel together as top modules. Accessing the design’s ports involves just a reference

through the full-chip’s hierarchy. For example, we could use assign statements and poke down through

the hierarchy to the design as in Figure 5.

module block_tb;

apb_intf apb_bus(); // Instantiate the physical interface

assign apb_bus.clk = toptb.fullchip.design_unit.clk;

assign apb_bus.psel = toptb.fullchip.design_unit.psel;

assign apb_bus.penable = toptb.fullchip.design_unit.penable;

...

endmodule : block_tb

Figure 5. Use of assign statements to connect the block-level testbench to the design unit in the full-chip
testbench.

SNUG 2009 10 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

A much better approach is to place the hierarchical references in the interface, which can be easily accom-

plished using a clocking block structure shown in Figure 6.

interface apb_intf();

logic clk;

logic psel;

logic penable;

clocking cb @(posedge clk);

input psel = toptb.fullchip.design_unit.psel;// Specify path reference

input penable = toptb.fullchip.design_unit.penable;

input pwrite = toptb.fullchip.design_unit.pwrite;

...

endclocking

modport TB (clock cb);

endinterface : apb_intf

Figure 6. Signal aliasing using clocking blocks.

Using references in the clocking block means that the testbench can now be used anywhere without modi-

fications since only the interface changes. In general, this approach is commonly used; however, EDA

tool support for references in clocking blocks may vary, and hierarchical references are tedious to main-

tain, typically not portable, and only work in Verilog-based designs.

3.2. Challenge of mixed-language designs

VHDL offers no support for references so for VHDL designs hierarchical references simply are not an

option. However, sometimes a mixture of Verilog and VHDL are required for a design. Within a Verilog

block, hierarchical references work as usual, but if the Verilog block is wrapped within a VHDL archi-

tecture then the references can no longer probe down through the design. Such is often the case in SoC

designs where many IPs and legacy blocks are integrated together. Therefore, alternative solutions must

be devised.

4 Using bind

In order to work around this limitation of VHDL, engineers typically resort to one of the following two

methods: either (1) using signal access routines (either proprietary or VHPI), or (2) the SystemVerilog

bind statement. Signal access routines vary in support across simulators and often end up being compli-

cated and proprietary, which limits portability of your verification environment across EDA tools. A

much better approach is using the SystemVerilog bind command. Bind allows you to instantiate a mod-

ule (the target module) inside any other module (the destination module), whether it is Verilog or VHDL,

without modification to the source code of the destination module. This approach is often used to attach

SystemVerilog assertions to a design without embedding them in the RTL code. Likewise, the use of

SNUG 2009 11 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

bind is more simulation efficient since hierarchical references limit the amount of optimizations a simu-

lator compiler can perform.

The simplest approach to using the bind statement is to bind the testbench interface directly inside the

full-chip design:

bind fullchip apb_intf apb_bus(...);

Figure 7. Binding the block-level testbench inside the full-chip design.

Now, the block-level testbench only needs a reference to the interface passed into its constructor:

module block_tb;

tb_env tb; // tb_env class instance variable

// apb_intf apb_bus(); // Not used in the full-chip environment

// Now create the class-based testbench

initial begin

tb = new (toptb.fullchip.apbunit.apb_bus, ...);

...

end

endmodule : block_tb

Figure 8. Accessing bound interface in full-chip environment from within the block-level testbench.

However, this approach suffers from two issues: (1) the top module of the block-level testbench needs to

be modified in order to remove the interface, and (2) a hierarchical reference is used to reference the

bound interface, which again fails to work with VHDL or mixed-language designs.

4.1. Testbench structure

The solution to access signals is to bind the entire block-level testbench into the full-chip design. Notice,

whenever a target module is bound, it gets instantiated inside the destination module. The block-level

testbench gains access to the design signals inside the full-chip design without the use of hierarchical ref-

erences.

bind fullchip block_tb tb_inst (); // Bind the block-level testbench inside

// the enclosing fullchip design along

// with the block-level design unit

Figure 9. Binding the block-level testbench into the full-chip design.

SNUG 2009 12 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

4.1.1. Binding signals to ports

Since the block-level testbench is instantiated directly inside the design, hierarchical paths are no longer

needed to access the signals. However, none of the design signals actually attach to the block-level test-

bench since none were specified in the bind statement. Instead, the bind statement needs the port con-

nections specified, which is most easily accomplished using the port connection shorthand:

bind fullchip block_tb tb_inst (.*);

Figure 10. Port connections specified in the bind statement.

Again, another problem arises because .* only connects to declared port connections, but the block-level

testbench lacks ports since testbenches do not use ports. So to allow the bind statement to bind into a

design and provide visibility to the design signals, all the design unit signals need to be mirrored in the

block-level testbench’s top-level module:

module block_tb (

input clk, output psel, penable, pwrite, ...,

input [`WIDTH:0] prdata

);

tb_env tb; // tb_env class instance variable

apb_intf apb_bus(); // Instantiate the physical interface

design dut (...);

// Now create the class-based testbench

initial begin

tb = new (apb_bus, ...); // Virtual interface

...

end

endmodule : block_tb

Figure 11. Design ports added to block-level testbench.

If the signal names differ inside the full-chip design, then the individual signals can be directly mapped

using the bind statement. Figure 13 illustrates this binding inside the full-chip environment.

bind fullchip block_tb tb_inst (.pclk (sysclk),

.psel (sel_a),

.penable(ena),

...);

Figure 12. Named mapping of ports in the bind statement.

SNUG 2009 13 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Figure 13. Diagram of the block-level testbench bound inside the full-chip design.

4.1.2. Connecting the ports to the interface

Once the design signals are visible inside the block-level testbench, the ports need to be connected into the

interface so the class-based testbench also has access to them through the virtual interface. Continuous

assign statements can be used, but an easier approach is to use automatic port mapping on the interface:

module block_tb (

input clk, output psel, penable, pwrite, ...,

input [`WIDTH:0] prdata

);

tb_env tb; // tb_env class instance variable

apb_intf apb_bus(.*); // Automated port mapping

...

Figure 14. Automatic port mapping of the block-level testbench ports to the interface.

or direct signal name mapping:

apb_intf apb_bus(.clk(clk), .psel(psel), .pwrite(pwrite), ...);

Figure 15. Named port mapping of block-level testbench ports to the interface.

Now, the apb_bus interface is passed into the class-based testbench environment and the testbench has

direct access to the signals of the design unit because the bind statement connects the two together.

block_tbblock_tb

tb_envtb_env

design

unit

design

unit

block_tb tb_inst (
 .pclk(sysclk),

 .penable(ena),
 …
);

virtu
a
l in

tf

fullchip

scoreboardscoreboard

componentcomponent

componentcomponent

transactortransactor

driverdrivermonitormonitor

SNUG 2009 14 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

4.1.3. Port directions

It is worth pointing out that the direction of the testbench ports are the mirror opposite of the design-

under-test. An output of the design becomes an input into the testbench, and an input becomes an output

in the same way that clocking block directions are specified. Table 1 lists the port directions of various

testbench components needed to reuse the block-level testbench in a full-chip environment.

Design Testbench Interface Clocking block

output input input input

input output output output

Table 1. Port directions for testbench components.

Using testbench ports like this has a few potential compilation issues. In the block-level environment, the

testbench ports are left unconnected since the top module is uninstantiated in simulation. In a full-chip

environment, however, these ports may have additional drivers that need consideration. SystemVerilog

allows variables to be used for both input and output ports as well as for continuous assignment state-

ments, but variables have no resolution functions and can have at most one driver. Likewise, using a

clocking block inside of an interface helps avoid race conditions, but clocking blocks also use variables

for driving signals. For this reason, binding the block-level testbench into a full-chip environment may

result in multiple drivers to variables, resulting in compilation or elaboration errors. In this case, using

wires instead of variables is a better choice to avoid these problems.

Complicating matters further, some active testbench components may be unnecessary in a full-chip envi-

ronment so the signals that were once outputs of the testbench become only inputs into the testbench

monitors. In other words, where the environment resides affects the direction of the testbench ports.

Therefore, inout ports are preferable for signals shared by both driving and passive components. Creat-

ing multiple clocking blocks with different port directions may help simplify the testbench connections

(see Figure 16).

interface apb_intf (

input PCLK,

input [15:0] PRDATA,

inout [15:0] PADDR,

inout [15:0] PWDATA,

inout PSEL,

inout PENABLE,

inout PWRITE

);

 // Clocking block for active driving components

 clocking drv_cb @(posedge PCLK);

 input #1step PRDATA;

 output #1 PADDR, PWDATA, PSEL, PENABLE, PWRITE;

 endclocking : drv_cb

SNUG 2009 15 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

 // Clocking block for passive monitor components

 clocking mon_cb @(posedge PCLK);

 input #1step PRDATA;

 input #1step PADDR, PWDATA, PSEL, PENABLE, PWRITE;

 endclocking : mon_cb

 // modport to provide controlled access from testbench

 modport test_mp (clocking drv_cb, clocking mon_cb);

endinterface : apb_intf

Figure 16. Interface example using multiple clocking blocks and inouts for signals no longer driven by the

block-level testbench drivers.

Another problem may be encountered depending on the implementation of your simulator. In Figure 16

above, the drv_cb clocking block will be unused in a full-chip environment if the full-chip design drives

those particular signals. Clocking blocks create variables called clocking vars, which drive continuously

as one would expect. When the clocking block is no longer driven in the full-chip environment, these

clocking vars drive a strong value of the variable’s initial value (X for 4-state and 0 for 2-state)., creating a

driving conflict on these signals usually resulting in X. Since clocking blocks provide no way to specify

an initial clocking var value, a temporary variable can be used that is initialized to a default value of high

impedance (Z). Now when they are no longer driven in the full-chip environment, no driver conflicts are

created. An example of this is shown in Figure 17. Interestingly, some simulators
2
 exhibit this clocking

block driving conflict while others
3
 do not.

interface apb_intf (

input PCLK,

input [15:0] PRDATA,

inout [15:0] PADDR, PWDATA,

inout PSEL, PENABLE, PWRITE

);

 // Assign high impedance to avoid driver conflicts in full-chip environment

 logic penable = 'bz;

 logic [15:0] paddr = 'bz;

 logic [15:0] pwdata = 'bz;

 logic psel = 'bz;

 logic pwrite = 'bz;

 // Create the drivers to drive the high impedance when not driven by drv_cb below

 assign PENABLE = penable,

 PADDR = paddr,

 PWDATA = pwdata,

 PSEL = psel,

 PWRITE = pwrite;

2
 E.g., IUS 8.x[5] and VCS 2008.x[6].

3
 E.g., Questasim 6.x[4].

SNUG 2009 16 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

 // Clocking block for active driving components

 clocking drv_cb @(posedge PCLK);

input #1step prdata = PRDATA;

output #1 paddr, pwdata, psel, penable, pwrite;

 endclocking : drv_cb

 ...

Figure 17. Local variables initialized to high impedance in order to avoid driver conflicts.

4.2. Conditional compilation

Another reuse issue remains in a full-chip environment—what to do with the instantiated design in the

block-level testbench since the design-under-test is now part of the entire full-chip design? The obvious

answer is to comment out the instantiated design module. Yet if structured correctly, conditional compi-

lation can eliminate the need for modifying or “hacking” the block-level environment.

Verilog provides two simple mechanisms for conditional compilation: (1) pre-processor directives like

`ifdef, and (2) generate statements. While both methods work, generate statements are less messy

and can take advantage of the same parameters used to parameterize classes in the block-level testbench

environment. By parameterizing the top testbench module, a generate statement can be added as follows:

module block_tb #(parameter ENV = `BLOCK_LEVEL)(

input clk, inout psel, ..., input [`WIDTH:0] prdata

);

tb_env tb;

bit local_clk; // New signal so multiple drivers not on “clk”

apb_intf apb_bus(.clk(local_clk), .*);

generate

if (ENV == `BLOCK_LEVEL) begin : gen_dut

design dut (apb_bus); // Instantiate design unit

// Clock generation logic needed for block-level TB

always `PERIOD local_clk = ~local_clk;

end

else

assign local_clk = clk; // Use input if in sys-level environment

endgenerate

initial begin

tb = new (apb_bus, ...);

...

end

endmodule : block_tb

Figure 18. Generate statements used to conditionally instantiate the design and glue logic.

SNUG 2009 17 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Using this block-level testbench structure, only a single parameter needs to be changed to use it in a full-

chip environment. When used by itself, the testbench instantiates the design and generates the clocking

logic; when used in a full-chip verification environment, the testbench uses the internal design clock and

no longer instantiates the block-level design unit. Combined with the bind statement, the entire block-

level environment can be reused in a full-chip verification environment without modification with just one

statement:

bind fullchip block_tb #(.ENV(`FULL_CHIP)) tb_inst (

.clk(global_clk), .psel(sel_a), ...);

Figure 19. Bind statement using a parameter to conditionally instantiate components.

4.3. Configurable verification components

Conditional compilation solves block-level testbench reuse issues like removing design instantiations,

clock generation logic, and multiple drivers on the input/output signals arising from binding into the full-

chip design; yet, more drivers remain. The class-based testbench objects also drive the same signals

through the virtual interface; therefore, the testbench needs the ability to disable actively driving compo-

nents like drivers and transactors when used in a full-chip environment.

Since class-based environments are dynamically created at run-time, many solutions are possible for dis-

abling active components (e.g., pre-processor directives, PLI/DPI, parameters, factory mechanisms, etc.).

Perhaps the simplest method is to use parameterized classes. This has the distinct advantage of using the

same parameter that the testbench’s top module uses for conditional compilation. For example, suppose

your testbench environment had verification components (e.g., OVM agent / VMM subenv) like this:

class apb_subenv #(parameter IS_ACTIVE = ‘TRUE) extends `VMM_SUBENV;

apb_transactor xactor;

apb_driver drv;

apb_monitor mon;

function void build();

super.build();

if (IS_ACTIVE) begin // Create active component if IS_ACTIVE

xactor = new (..);

 drv = new (..);

end

mon = new (..);

endfunction : build

...

endclass : apb_subenv

Figure 20. Parameterized class-based testbench component.

SNUG 2009 18 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

In this example, the parameter affects the building and configuring of the verification component. When

the IS_ACTIVE flag is set, the APB component actively drives signals through the virtual interface by the

driver; otherwise, it only passively monitors traffic on the interface. The environment class uses the same

parameter and passes it on to its many sub-components (Figure 21):

class tb_env #(parameter IS_ACTIVE = ‘TRUE) extends vmm_env;

apb_subenv #(IS_ACTIVE) apb_comp; // APB component

mcbsp_subenv #(IS_ACTIVE) mcbsp_comp; // McBSP component

usbhs_subenv #(IS_ACTIVE) usbhs_comp; // USB High Speed Component

...

endclass : tb_env

Figure 21. Class parameter passed to various active testbench components.

Now putting everything together, the parameter used to specify whether the environment is used in the

block or full-chip environment can be passed directly into the testbench environment:

bind fullchip block_tb #(.ENV(`FULL_CHIP)) tb_inst (

.clk(global_clk), .psel(sel_a), ...);

module block_tb #(parameter ENV)(

input pclk, ...,

input [`WIDTH:0] prdata

);

tb_env #(.IS_ACTIVE(ENV == `BLOCK_LEVEL)) tb; // Results in

// IS_ACTIVE = `FALSE

// which turns off the

// testbench components

...

endmodule : block_tb

Figure 22. Top module parameter passed into parameterized classes.

The use of parameterized classes does have the unfortunate drawback of requiring the identical parameter

specified whenever the class is declared or used with typedef. For example, this means that apb_subenv

#(`TRUE) is a different class than apb_subenv #(`FALSE). Therefore, using a common base class

pointer to apb_subenv and calling $cast() on it cannot be safely done since the parameter of the object

may be incompatible. Alternately, the use of an active flag works just as well and an example is shown in

Figure 23.

SNUG 2009 19 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

bind fullchip block_tb #(.ENV(`FULL_CHIP)) tb_inst (...);

module block_tb #(parameter ENV)(...);

tb_env tb;

initial begin

tb = new (...);

tb.apb_comp.is_active = (ENV == `BLOCK_LEVEL); // Set the active flag

...

end

endmodule : block_tb

class apb_subenv extends `VMM_SUBENV;

bit is_active = 1; // Active by default

function void build();

super.build();

if (is_active) begin // Create active component only if is_active

xactor = new (..);

 drv = new (..);

end

...

Figure 23. Use of an active flag instead of a parameterized class to disable testbench components.

Note that some methodologies recommend the use of callbacks in active transactor components. If a

transactor callback is used to pass information to a scoreboard, then disabling the transactor may also dis-

able the scoreboard checking in the block-level environment. Therefore, care should be taken that a

block-level checker or scoreboard also work in a full-chip environment, which can easily be accomplished

by using only passive components (i.e., monitors) to send information to the scoreboard.

5 Reuse in full-chip testcases

5.1. OVM environments

Significant effort goes into developing block-level transaction generators, drivers, hierarchical stimulus

(sequences), etc. so accessing these components in a full-chip testcase would have great reuse benefits.

With a factory-based methodology like OVM[3], this is easily accomplished by configuring the factory

before building the testbench environment. For example, Figure 24 demonstrates how the block-level

sequencer can be configured to use a particular default sequencer. Care should be taken not to call

run_test() more than once so the block-level testbench should conditionally invoke it.

SNUG 2009 20 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

class sys_test1 extends ovm_test;

 sys_env systb;

 function void build();

// Configure block-level seqr

// using the factory mechanism

 set_config_string (

 “*.serio_seqr”,

 “default_sequence”,

 “serio_parity_err_seq”);

 ...

 endfunction

 ...

endclass : sys_test1

module block_tb #(ENV) ...;

 tb_env tb;

 initial begin

tb = new (...);

 // Only invoke run_test() once!!

 if (ENV == `BLOCK_LEVEL)

run_test();

 end

 ...

endmodule: block_tb

Figure 24. OVM example using the factory to configure a block-level testbench sequencer.

5.2. VMM and other environments

In other types of environments like VMM[1], accessing the bound block-level testbench only requires a

reference to the testbench object by a global variable. A global variable can easily be created by either

defining a variable in a package or through a static class member. When the testbench object is created,

the class constructor saves a reference to itself into the global variable. Then, the full-chip top module or

testcase accesses the individual class-based components through a hierarchical reference using the block-

level testbench reference
4
 (see Figure 25). Since the components are SystemVerilog objects, using a hier-

archical reference is not an issue as in VHDL.

package block_pkg;

 typedef block_env; // Forward typedef

 block_env _env; // Global var

 class block_env extends base_class;

 function new();

 // Save reference to self

 _env = this;

 ...

 endfunction

 ...

module fullchip_tb;

 block_env block_tb;

my_special_xactor xactor;

initial begin

 // Grab reference

 block_tb = block_pkg::_env;

 // Reference OK in SysVerilog

 block_tb.serio_comp.serio_xactor =

 xactor;

 ...

 end

Figure 25. Global package variable provides access to block-level testbench wherever it is bound into the
full-chip environment.

4
Of course, this only works for one instance of the testbench environment. In environments using multiple testbench objects, a

global queue of references would suffice. In practice, however, this is probably not a common concern.

SNUG 2009 21 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Alternatively, a static class member can be used as shown in Figure 26. So no matter where the block-

level testbench is bound, the full-chip testcases still can access and configure the block-level testbench

components (see Figure 27).

class block_env extends base_class;

 static block_env _env; // Global var

 function new();

 // Save reference to self

 this._env = this;

 ...

 endfunction

 ...

endclass : block_env

module fullchip_tb;

 block_env block_tb;

my_special_xactor xactor;

initial begin

 // Grab reference

 block_tb = block_env::_env;

 // Reference OK in SysVerilog

 block_tb.serio_comp.serio_xactor =

 xactor;

 end

Figure 26. Global static class member provides access to block-level testbench wherever it is bound into
the full-chip environment.

Figure 27. Diagram illustrating how a global package variable can be used to reference a testbench wher-
ever it instantiated (bound).

bind fullchip block_tb ...bind fullchip block_tb ...

class test1 extends ...;

block_env block_tb;

my_special_xactor xactor;

 function void build();

block_tb = block_env::_env;

block_tb.comp.xactor = xactor;

...

endclass

class test1 extends ...;

block_env block_tb;

my_special_xactor xactor;

 function void build();

block_tb = block_env::_env;

block_tb.comp.xactor = xactor;

...

endclass

fullchip envfullchip env

scoreboardscoreboard

package block_pkg;

 block_env _env;

 ...

package block_pkg;

 block_env _env;

 ...

componentcomponent

componentcomponent

componentcomponent

componentcomponent

transactortransactor

driverdrivermonitormonitor

module
cpu

module
cpu

module
sram

module
sram

module
serial io
module
serial io

interface bus_ifinterface bus_if

module
rom

module
rom

module
bus_arbiter

module
bus_arbiter

block_tb

tb_envtb_env

scoreboardscoreboard

v
irtu

a
l in

tf

componentcomponent
componentcomponent

transactortransactor

driverdrivermonitormonitor

SNUG 2009 22 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

5.3. VMM and OVM interoperability
5

One of the advantages of using this bind methodology is that totally heterogeneous verification environ-

ments can easily work together. Whether a testbench is written in VHDL, Verilog, or SystemVerilog, it

can be bound together with any other environment.

A good application for this is interoperability between VMM and OVM environments. For instance, sup-

pose a block-level environment is written in VMM and needs to be integrated together with an OVM full-

chip environment. The bind statement can insert the VMM environment within the OVM testbench

where both co-exist and execute in parallel without modifications. Each environment can access the

other’s components via a global reference as described above in Section 4.3. For example, an OVM envi-

ronment could start the phases in VMM as follows:

// Bind the VMM environment into the OVM full-chip environment

bind fullchip vmm_block_tb #(.ENV(`FULL_CHIP)) vmm_tb_inst (

.clk(global_clk), .psel(sel_a), ...);

// The full-chip OVM environment

class ovm_fullchip_env extends ovm_env;

...

// Grab a reference to the VMM environment

vmm_block_env vmm_block_tb = vmm_block_pkg::_env;

function void build(); // OVM build phase

super.build();

// Access the VMM environment and start the VMM phases

vmm_block_tb.env.gen_cfg();

vmm_block_tb.env.build();

endfunction : build

task run(); // OVM run phase

fork vmm_block_tb.env.run(); join_none // Kick off the VMM run phase

...

endtask : run

endclass : ovm_fullchip_env

// Top-level OVM testbench

module ovm_fullchip_tb;

...

initial

run_test(); // Kick off the OVM machinery

endmodule : ovm_fullchip_tb

Figure 28. OVM example accessing a VMM environment.

5
 Note, some EDA vendors provide compatibility libraries worth considering, which provide an alternative approach for

interoperability.

SNUG 2009 23 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Of course, swapping out components or transaction objects from one environment to another requires us-

ing the appropriate base class objects. The appropriate packages or header files need to be included and

the appropriate VMM or OVM class types used.

6 Putting it all together
Bringing all the pieces together, a block-level testbench can easily and effortlessly be reused without

modifications using a single bind statement provided it follows a set of simple templates. The following

figures distill and enumerate these essential elements and presents the skeletons to use for the top module,

interface, class-based environment, and bind statement.

//

// Block-level top module

//

module block_tb #(parameter env_flag = `BLOCK_LEVEL) // (1) Parameterize

 (design_port_list); // (2) Add design signals

 // (3) Pass the environmental parameter into

 // the class-based testbench environment

 tb_class #(.active_flag(env_flag == `BLOCK_LEVEL)) tb_var;

 // (4) Conditionally compile

 // Use the generate statement around the bits of code that need to be turned

 // off in a full-chip environment. For example, the DUT no longer needs

 // instantiated, clock generation logic needs disable, etc.

 generate

 if (env_flag == `BLOCK_LEVEL)

// Instantiate the design.

// e.g., design dut (...);

// Local clock, reset, muxing, etc. logic.

// e.g., always local_clk = `PERIOD ~local_clk;

 else

// Use input clock, reset, etc.

// e.g., assign local_clk = <sysclk>;

 endgenerate

 // (5) Connect the ports to the interface

 intf intf_inst(.clk(local_clk), .*);

 initial begin

// Create the testbench and pass the virtual interface into it

tb_var = new (intf_inst, ...);

...

 end

endmodule : block_tb

Figure 29. Block-level testbench top module template.

SNUG 2009 24 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

//

// Interface to DUT used by the class-based testbench

//

interface intf (

input wire ..., // (6) Use ports and wires instead

output wire ..., // of local variables

inout SIGNAL1, SIGNAL2, ... // (7) Use inout ports for signals

// driven by the driver and

// read by the monitor (see

// Section 4.1.3).

);

 // (8) Assign high impedance to avoid driver conflicts in full-chip environment

 logic signal1 = 'bz;

 logic signal2 = 'bz;

 ...

 // (9) Create the drivers to drive the high impedance when not driven by drv_cb

 assign SIGNAL1 = signal1,

 SIGNAL2 = signal2,

 ...;

 // (10) Create clocking block for active driving components

 clocking drv_cb @(posedge PCLK);

 input #1step ...;

 output #1 signal1, signal2, ...;

 endclocking : drv_cb

 // (11) Create clocking block for passive monitor components

 clocking mon_cb @(posedge PCLK);

 input #1step ...;

 input #1step signal1, signal2, ...;

 endclocking : mon_cb

 // modport to provide controlled access from testbench

 modport test_mp (clocking drv_cb, clocking mon_cb);

endinterface : apb_intf

Figure 30. Testbench to DUT interface template.

SNUG 2009 25 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

//

// Class-base testbench environment

//

// (12) Parameterize testbench class

class tb_env

 #(parameter active_flag = `TRUE)

 extends base_class;

 // (13)

 // Pass active flag to all

 // components via a parameter

 component #(active_flag) comp;

 /********* OR ... **************/

 // Use a flag, which is

 // more flexible

 comp.active_flag = active_flag;

endclass : tb_env

//

// Testbench components

//

// (14)

// Parameterize component classes

class component

 #(parameter active_flag = `TRUE)

 extends base_class;

/*********** OR ... ***************/

// Use active flag instead of

// parameter

class component extends base_class;

 bit active_flag = `TRUE;

 ...

 // (15) Build active components only

 // if active flag is set

 if (active_flag) begin

xactor = new (...);

driver = new (...);

 end

Figure 31. Block-level class-based environment template.

//

// Bind statement

//

// (16) Use the bind statement to put the block-level environment into the

// full-chip environment. Set the environmental flag to FULL_CHIP and

// connect the design ports to the testbench.

bind design block_tb #(`FULL_CHIP) tb_inst(design_port_list);

Figure 32. Full-chip bind statement template.

7 Conclusions
The SystemVerilog bind statement offers a perfect solution for accessing signals within a mixed-language

design. Additionally, it offers an ideal solution for using any block-level testbench in any full-chip envi-

ronment. Reuse could not be made simpler.

However, this method may pose a few tool-related challenges. Since using a single bind statement is

simple, the most difficult and time-consuming aspect of this methodology is integrating together the

makefile tool flows of the different testbench environments. For example, class libraries may differ (e.g.,

VMM vs. OVM), include paths may change, and tool options may be different between environments.

SNUG 2009 26 Using bind for Class-based Testbench

Reuse with Mixed-Language Designs

Similarly, simulator support for SystemVerilog features like the bind statement or parameterized classes

often pose an obstacle to using this methodology. Not all simulators treat bind equally. For example,

when using the bind statement in its own file, Questasim™[4] requires the additional compilation flags

-mfcu –cuname name in order to place it in its own $unit as well as specifying the unit name as a top

module when launching the simulator.

Similarly, some simulator versions do not fully or adequately support parameterized classes so using an

active flag instead of a parameter is probably a better option for tool portability. The use of static vari-

ables in a class or global variables within a package for accessing bound testbench objects may also have

limited support in older simulator versions. In general, however, all recent versions of major mixed-

language simulators provide adequate support for the methodology presented in this paper.

Therefore, this methodology offers a generic, simple, and effective reuse methodology for any type of

class-based testbench environment. With one bind statement, much effort rewriting block-level checks,

stimulus, and coverage is saved, and the full-chip verification effort can hit the ground running regardless

of the HDL language used in the design.

8 Acknowledgements

I would like to thank my colleagues at Doulos for their valuable feedback, especially Jonathan Bromley

for his helpful insights and suggestions, and my many students who prompted these ideas.

Any trademarks or other proprietary names mentioned in this paper are acknowledged as the property of

their respective owners.

9 References

[1] "IEEE Standard for SystemVerilog- Unified Hardware Design, Specification, and Verification Language," IEEE Std 1800-

2005, 2005.

[2] Bergeron, Janick, E. Cerny, A. Hunter, and A Nightingale. Verification Methodology Manual for SystemVerilog. Norwell,

MA: Springer, Inc, 2005.

[3] "OVM Reference Manual Version 2.0", Cadence Design Systems Inc (San Jose, CA) and Mentor Graphics Inc (Beaverton,

OR), September 2008.

[4] "Questasim 6.4a" tool from Mentor Graphics Inc, Beaverton, OR.

[5] “IUS 8.x” tool from Cadence Design Systems Inc, San Jose, CA.

[6] “VCS 2008.x” tool from Synopsys Inc, Mountain View, CA.

