
Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 1

February 22, 2007

Towards a Practical Design Methodology
with SystemVerilog Interfaces and Modports

Jonathan Bromley

Senior Consultant

Doulos, Ringwood, UK

jonathan.bromley@doulos.com

Notes

This paper was presented at DVCon 2007 (see www.dvcon.org) where it was
judged by delegates to be joint Best Paper. The full text of the paper is available
in the DVCon Proceedings, and on the Doulos website www.doulos.com.

The other joint winner was:

FEV’s Greatest Bloopers: False Positives in Formal Equivalence

Erik Seligman, Joonyoung Kim
Digital Enterprise Group, Intel Corporation, Hillsboro, OR

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

2 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Multi-level bus architecture

Many of today's FPGA and ASIC designs use interconnect schemes such as
AMBA (published by ARM Ltd) or other standards.

Bus fabric Unlike traditional rack-and-cards systems, an on-chip system is likely to use
many different forms of interconnect – our example shows the high-performance
AXI and AHB buses co-existing with the much simpler, lower-performance APB.
Furthermore, point-to-point connection is usually preferable to shared (multi-
drop) interconnect. It is therefore usually necessary to have one or more bus
switching and bridge blocks, shown here as a "Bus fabric" module. Such
modules are often quite complex, and need extensive customisation to suit the
number and type of subsystems in each individual application.

The use of bus fabric modules typically leads to multiple instances of a given
interconnect structure at the top level of the design. In our example we have two
instances of the AXI bus, and two instances of APB.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 3

Multi-level bus architecture

Enclosing top-level module

Peripheral

Bus fabric

Peripheral

APB

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I

APB

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

4 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

The need for encapsulated interconnect

Because there are two APB buses at the same level of hierarchy, we have a
problem when we come to create the wiring. The standard name for the
address bus in APB is PADDR, but we can't use that name for two separate
signals! In a traditional system we would be obliged to invent two different
names for the two PADDR signals – and, of course, do the same over and over
again for all the other signals too.

Perhaps you use scripts, or a graphical design entry tool, to do all this tiresome
top-level wiring, in which case the signals will probably get unfathomable names
such as PADDR_1 and PADDR_2. Alternatively you may do it manually, which is
unpleasantly laborious and error-prone. Neither solution seems ideal.

We could solve this problem elegantly if we had some way to encapsulate the
whole of an APB (or any other) interconnect in a single structure. As we will see
in the next few pages, SystemVerilog's interface construct provides just such
an encapsulation.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 5

Enclosing top-level module

The need for encapsulated interconnect

• Multi-level bus structures may have many instances of the
same set of bus signals with standard names

Peripheral

Bus fabric

Peripheral

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I

Conflicting signal namesConflicting signal names
PADDR PADDR

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

6 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Data structures are not enough

First, though, we'll look at an alternative possibility. SystemVerilog also offers
the struct feature, allowing users to define a data type that contains a
collection of distinct data items. Our example shows the definition of a new data
type APB that can be used as a "cookie cutter" to create new variables, each of
which represents the complete set of signals needed for the APB interconnect.

However, if you try to use this mechanism you will find exactly the same
difficulties that VHDL users have suffered for many years when trying to use the
RECORD construct to do such things:

• it is impossible to specify input or output directions individually for the
various components of the record, which is very troublesome;

• a module wishing to connect to such a structure must simply connect to all
of it – there is no way to distinguish the various different roles, such as
master or slave, that different modules may have;

• signals whose scope extends outside the bus itself, such as clock and reset,
cannot be conveniently integrated into this arrangement.

These are exactly the problems that SystemVerilog interfaces were designed
to solve, as we'll see on the next page.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 7

Data structures are not enough

• No direction information

• No distinction of roles (slave, master, ...)

• Hard to integrate global signals (clock, reset, ...)

typedef struct {

 logic PSEL;

 logic PENABLE;

 logic PWRITE;

 t_APB_a PADDR;

 t_APB_d PWDATA

 t_APB_d PRDATA;

} APB ;

typedef struct {

 logic PSEL;

 logic PENABLE;

 logic PWRITE;

 t_APB_a PADDR;

 t_APB_d PWDATA

 t_APB_d PRDATA;

} APB ;

Enclosing top-level module

Peripheral

Bus fabric

Peripheral

APB

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I
APB

...
APB apb_1, apb_2;
...

...
APB apb_1, apb_2;
...

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

8 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Interface captures interconnect

Here we see the simplest way to use an interface to capture a structured set
of interconnect. The interface is defined in much the same way as a module;
indeed, the writer is strongly of the opinion that interfaces and modules are very
nearly the same!

Interface contents
The interface contains declarations of nets or (as here) variables that represent
the various signals that form the interconnect. Note that we can use the signal's
standard data-sheet names, since there will be no conflict with signals of the
same name elsewhere in the design.

Ports
The interface can also have ports; here we have used a port to bring in a global
clock signal, making it visible by its standard name PCLK within the interface
itself.

Instantiating the interface
Now that we have defined the interface, we can instantiate it in just the same
way as we could instantiate a module. Note how we have wired the same global
clock signal PCLK to both instances of the interface.

Because we have used interfaces to capture the interconnect, the top-level
enclosing module is now much cleaner and easier to understand than it would
be if each interface were represented as a collection of separate signals.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 9

Interface captures interconnect

• Global signals ported into the interface

• Each interface instance provides a new set of bus signals

• Enclosing module is now much cleaner

interface APB (

 input bit PCLK);

 logic PSEL;

 logic PENABLE;

 logic PWRITE;

 t_APB_a PADDR;

 t_APB_d PWDATA

 t_APB_d PRDATA;

endinterface

interface APB (

 input bit PCLK);

 logic PSEL;

 logic PENABLE;

 logic PWRITE;

 t_APB_a PADDR;

 t_APB_d PWDATA

 t_APB_d PRDATA;

endinterface

Enclosing top-level module

Peripheral

Bus fabric

Peripheral

APB

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I
APB

bit PCLK;
APB apb_1(PCLK);
APB apb_2(PCLK);

bit PCLK;
APB apb_1(PCLK);
APB apb_2(PCLK);

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

10 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Porting the interface into a module

We have now created the interconnect and instantiated it in the enclosing
module, but how do we connect it to one of the attached modules?

Our example shows what must surely be the simplest imaginable APB
peripheral: a parallel output register that captures and stores whatever data is
written to it. Naturally, this output register has an output port making the register
value available to the external world. But it needs only one more port – the APB
interface. We "connect" this port to the interface instance that carries the signals
we need.

As you can see from the code for module APB_outReg, we can reach through
the interface port into the connected interface instance by using dotted names.
This makes the connected module a little more complicated, and for a big
complex module it might be better to create "alias" signals inside the module so
that the dotted name can be referenced just once, and a simpler name can be
used internally. Here's the code for module APB_outReg, rewritten to use
internal signals:

module APB_outReg (APB bus, output t_APB_d Q);

 //

 // Create internal signals to simplify the

 // remainder of the module

 t_APB_d PWDATA;

 logic PSEL, PENABLE, PWRITE, PCLK;

 assign PWDATA = bus.PWDATA;

 assign PSEL = bus.PSEL;

 assign PENABLE = bus.PENABLE;

 assign PWRITE = bus.PWRITE;

 //

 // Simplified internal logic

 always @(posedge PCLK)

 if (PSEL & PENABLE & PWRITE)

 Q <= PWDATA;

endmodule

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 11

Porting the interface into a module

• Port of interface type makes all interface contents visible

• Access using
interface_port_name.interface_contents

Enclosing top-level module

Peripheral

Bus fabric

Peripheral

APB

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I
 APB

module APB_outReg (

 APB bus,

 output t_APB_d Q);

 always @(posedge bus.PCLK)

 if (bus.PSEL & bus.PENABLE & bus.PWRITE)

 Q <= bus.PWDATA;

endmodule

module APB_outReg (

 APB bus,

 output t_APB_d Q);

 always @(posedge bus.PCLK)

 if (bus.PSEL & bus.PENABLE & bus.PWRITE)

 Q <= bus.PWDATA;

endmodule

t_APB_d Out;
APB_outReg lamp_reg (
 .bus(apb_2), .Q(Out));

t_APB_d Out;
APB_outReg lamp_reg (
 .bus(apb_2), .Q(Out));

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

12 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Modports reflect client roles

We have used ports on an interface to solve the problem of integrating global
signals with the interconnect, but we also need to deal with two other issues: the
distinction of various client rôles, and establishing the dataflow direction for each
signal individually. Using the modport construct elegantly solves both these
problems.

In any interface, we can declare one or more modport specifying a view of the
interface that one client rôle should see. The modport details the names of
interface signals that are available to the client, and the directions of each signal
from the point of view of the connected module. In our example, we have made
all interface signals available to both the master and slave clients. However, if
we prefer we can also make some signals invisible to certain clients, simply by
omitting those signals from the modport list.

A client module can then choose to connect to the appropriate modport, rather
than the whole interface.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 13

Modports reflect client roles

Enclosing top-level module

Peripheral

Bus fabric

Peripheral

APB

CPU DMA Memory

PeripheralPeripheral

A
X

I

A
H

B

A
X

I
APB

interface APB (input bit PCLK);

 logic PSEL, PENABLE, PWRITE;
 t_APB_a PADDR;
 t_APB_d PWDATA, PRDATA;

 modport Master (
 input PCLK,
 output PSEL, PENABLE, PWRITE, PADDR, PWDATA,
 input PRDATA);

 modport Slave (
 input PCLK,
 input PSEL, PENABLE, PWRITE, PADDR, PWDATA,
 output PRDATA);

endinterface

interface APB (input bit PCLK);

 logic PSEL, PENABLE, PWRITE;
 t_APB_a PADDR;
 t_APB_d PWDATA, PRDATA;

 modport Master (
 input PCLK,
 output PSEL, PENABLE, PWRITE, PADDR, PWDATA,
 input PRDATA);

 modport Slave (
 input PCLK,
 input PSEL, PENABLE, PWRITE, PADDR, PWDATA,
 output PRDATA);

endinterface

• Directions are relative to the connected (client) module

• Modports also can restrict visibility
(some roles don't need to see all contents of interface)

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

14 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Synthesis example

This example shows a trivial interface (containing only one signal!) with two
modports, one for the driver of that signal and one for the receiver. You can see
how each connected module specifies a port of the form

interface_name.modport_name

and the module instance likewise specifies both the interface instance and the
modport to which it wishes to connect. Later we will see that it is not always
necessary to specify the modport in both places (module definition and module
instance), although it does provide stronger checking if you provide both.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 15

module Top;
 Itf inst_Itf();
 Master inst_M(inst_Itf.M);
 Slave inst_S(inst_Itf.S);
endmodule

module Top;
 Itf inst_Itf();
 Master inst_M(inst_Itf.M);
 Slave inst_S(inst_Itf.S);
endmodule

Synthesis example

interface Itf;
 logic L;

 modport M(output L);
 modport S(input L);
endinterface

interface Itf;
 logic L;

 modport M(output L);
 modport S(input L);
endinterface

module Master(
 Itf.M iM

);

 always ...
 iM.L <= 1'b0;

 ...

endmodule

module Master(
 Itf.M iM

);

 always ...

 iM.L <= 1'b0;

 ...

endmodule

module Slave(
 Itf.S iS

);

 always @(iS.L)
 ...

endmodule

module Slave(
 Itf.S iS

);

 always @(iS.L)

 ...

endmodule

inst_M inst_Sinst_Itf

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

16 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Synthesis results

Interfaces and modports are synthesisable!

This slide shows the netlist that would result from synthesis of the previous
page's example. The details might differ slightly between different synthesis
tools, but the general principles are exactly as shown here.

First, the synthesis tool flattens or "explodes" the interface instance so that all its
contents are declared directly in the enclosing module. Naturally, that will entail
some renaming of the interface contents – especially if there is more than one
instance of the same interface.

Next, the synthesis tool must rewrite each connected module's port list so that it
expects to connect to a set of distinct signals, rather than an interface or
modport. All the connected module instantiations must then be rewritten to
match.

Finally, the synthesis tool patches-up all references to interface signals within
the connected modules so that instead they reference the newly created ports.

At the time of writing (February 2007) not all synthesis tools yet support this, but
support is growing fast and already there are examples of both FPGA and ASIC
synthesis tools that have the necessary SystemVerilog capability.

It's not all good news…
It's clear that straighforward use of interfaces for point-to-point interconnection is
convenient and practical. However, on the next few pages we will investigate
some common problems that cannot be solved quite so easily.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 17

module Top;
 logic inst_Itf_L;
 Master inst_M(inst_Itf_L);
 Slave inst_S(inst_Itf_L);
endmodule

module Top;
 logic inst_Itf_L;
 Master inst_M(inst_Itf_L);
 Slave inst_S(inst_Itf_L);
endmodule

Synthesis results

• Interface instance contents
are "exploded" into the
enclosing module

module Master(
 output logic Itf_L

);

 always ...
 Itf_L <= 1'b0;

 ...

endmodule

module Master(
 output logic Itf_L

);

 always ...

 Itf_L <= 1'b0;

 ...

endmodule

module Slave(
 input logic Itf_L

);

 always @(Itf_L)
 ...

endmodule

module Slave(
 input logic Itf_L

);

 always @(Itf_L)

 ...

endmodule

inst_M inst_S

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

18 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Multiple drivers on a bus

Like many interconnect schemes, APB is designed to link one master to multiple
slaves. For signals going from master to slave, this is straightforward; the
master drives a signal, and multiple slaves receive it. For signals going the
other way, though, things are more troublesome. In our APB example only one
signal is driven by slaves: the read data signal PRDATA. For any bus read cycle,
just one slave is selected (typically by address decoding) and only that slave
should drive PRDATA. How can we arrange this if we use an interface?

Three-state drivers
All slaves' PRDATA outputs are connected to a common net in the interface.
Only the selected slave drives the PRDATA net. Other, deselected slaves place
the high-impedance value 'bZ on the net.

This approach works correctly both for synthesis and for simulation, but it
represents a hardware modelling style that is completely inappropriate for
modern on-chip architectures. Some synthesis tools can automatically re-map
this structure to a multiplexer, but this is not guaranteed and we cannot
recommend this style for routine use.

Multiplexer or AND-OR logic
Alternatively, each slave can have its own PRDATA signal. These various
signals can then be multiplexed on to the master's common PRDATA, using the
same address decode that was used to select the slaves. Alternatively,
deselected slaves can drive their outputs to zero, and all the outputs can then be
ORed together to create the correct readback value.

This approach is perfect for hardware, but requires that we create distinct
PRDATA signals for each individual slave. As we will see later, this is difficult to
arrange using interfaces and modports.

Selective deposit to a variable
For simulation, the most natural and most elegant approach is for the selected
slave to write to a variable PRDATA in the interface, and for all deselected slaves
simply to refrain from writing to that variable. Verilog's "last-write-wins"
behaviour then ensures that the required value appears on PRDATA.

This approach works well in simulation, but is not synthesisable because the
synthesis tool cannot resolve the effect of multiple processes writing to the same
variable. Consequently it can't be used for real hardware design.

We believe this to be the most significant difficulty relating to the use of
interfaces in synthesisable design.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 19

Slave
module
Slave

module
Master
module
Master
module

Slave
module
Slave

module

Multiple drivers on a bus

PCLK,
PSEL etc.

PRDATA

APB interface
instance

APB interface
instance

• Multiple drivers on net: OK for
synthesis, bad for hardware

• Multiple deposits to variable:
OK for modelling, not
synthesisable

Tri-state bus? Multiplexer? Wire-OR?Tri-state bus? Multiplexer? Wire-OR?

APB.Master modportAPB.Master modport

APB.Slave
modports

APB.Slave
modports

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

20 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Bus fabric module and simple interfaces

As a pragmatic solution to the difficulties noted on the previous page, we can
restrict our use of interfaces to only point-to-point interconnect. In such a
scenario, we would need a bus fabric or bus matrix module – coded as a
conventional Verilog module – to capture the selection and multiplexing logic
required to steer the various signals appropriately. The bus matrix module
would obviously need a port (of interface type) for each connected master and
slave device.

This approach works well with current tools. It has all the benefits, already
described, of simplifying the enclosing module because there is only one
interface instance for each connected client, rather than a multitude of individual
signals all needing distinct names. However, it does not leverage the interface
mechanism as effectively as we might wish.

A particular disadvantage with this approach is that the bus matrix module,
which will of course need to be different for different applications, cannot easily
be parameterised. Although Verilog modules can be given parameters, the
number of ports in their port list is fixed. Consequently, it is likely that the bus
fabric module will be created either by hand or – more likely – by use of a
specialised bus fabric IP customisation tool that generates the required
synthesisable Verilog code as one of its outputs.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 21

Bus fabric
module

Bus fabric
module

Slave
module
Slave

module

Bus fabric module and simple interfaces

Master
module
Master
module

PCLK,
PSEL etc.

PRDATA

Master modportMaster modport

• OK for modelling, simulation
and synthesis

• Works with today's tools
Slave

module
Slave

module

Multiple interface
instances

Multiple interface
instancesSlave modportSlave modport

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

22 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Interface architecture challenges

If we wish to exploit the power of interfaces more fully, we must solve the
problem of multiple client modports and multiple drivers on interface signals.

Each slave must connect to a distinct modport, because each slave has a
distinct identity and occupies a specific address range. However, this conflicts
with the obvious need for every slave interface to look identical; they should all
present the same set of APB slave signals. Clearly, this gives us a problem of
naming.

Furthermore, the bus fabric interface must now accept some responsibility for
address decoding. We must choose whether this decoding is done centrally, by
the interface itself, or by each individual slave performing a matching operation
on the address value.

Address ranges, number of masters and slaves, and other features of the whole
bus-based system should ideally be parameterisable.

Finally we must solve the problem of multiple drivers on a signal, as described
earlier – although, as we will see, this problem is very closely related to the
problem of modport signal naming.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 23

Interface architecture challenges

• Slave modports cannot be identical

• each slave has an address range

• Who chooses a slave’s address?

• each slave, or centrally in the bus fabric?

• Each slave can drive readback signals

• multiplexer schemes require a distinct modport per slave

Slave
module
Slave

module
Master
module
Master
module

Slave
module
Slave

module

PCLK,
PSEL etc.

PRDATA

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

24 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Modport expressions

The SystemVerilog language standard (IEEE Std.1800-2005) already provides a
solution to many of the difficulties we have described, with its modport
expression construct. This diagram shows a very simple use of modport
expressions.

The interface contains a vector signal V[1:0]. We imagine that the master
module needs to see the full vector, but each slave should drive only one bit of
the vector. This can be done by passing a parameter – the bit number – into
each slave; but this is not ideal, because it means that the slaves need to be
aware of the internal structure of the interface. Ideally, each slave should see
only the single-bit output that it requires; and, of course, it would be best it both
slaves see exactly the same set of connections.

Modport expressions enable all this by renaming a signal as it goes through the
modport. The modport expression

output .L(V[0])

says that the module connected to the modport should see a signal called L, but
that signal should in fact be implemented by signal V[0] inside the interface
itself.

Now we have two different modports, but each of them presents exactly the
same appearance to its connected module.

But there is some bad news:

No current SystemVerilog tools support modport expressions!

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 25

module Top;
 Itf2 inst_Itf2();
 Master inst_M(inst_Itf2.M);
 Slave0 inst_S0(inst_Itf2.S0);
 Slave1 inst_S1(inst_Itf2.S1);
endmodule

module Top;
 Itf2 inst_Itf2();
 Master inst_M(inst_Itf2.M);
 Slave0 inst_S0(inst_Itf2.S0);
 Slave1 inst_S1(inst_Itf2.S1);
endmodule

Modport expressions

interface Itf2;
 logic [1:0] V;

 modport M(input V);

 modport S0 (
 output .L(V[0]));

 modport S1 (
 output .L(V[1]));

endinterface

interface Itf2;
 logic [1:0] V;

 modport M(input V);

 modport S0 (
 output .L(V[0]));

 modport S1 (
 output .L(V[1]));

endinterface

module Master(

 Itf2.M iM

);

 always @(iM.V)
 ...

module Master(

 Itf2.M iM

);

 always @(iM.V)
 ...

module Slave0(

 Itf2.S0 iS

);

 always ...

 iS.L <= ...

module Slave0(

 Itf2.S0 iS

);

 always ...

 iS.L <= ...

inst_M inst_S0inst_Itf2

module Slave1(
 Itf2.S1 iS

);

 always ...

 iS.L <= ...

module Slave1(
 Itf2.S1 iS

);

 always ...

 iS.L <= ...

inst_S1

Identical namesIdentical names

• Rename signals
across a modport

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

26 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Specialised modports

Here's the idea from the previous page, worked through in a more practical
example. Let's suppose that we want to connect a UART device to our APB
system. The UART device has already been designed to expect an APB
interface. Note that the module definition for APB_UART doesn't specify any
modport in its port list, but we do specify the modport when we instantiate it. In
this way we don't need to make the module unnecessarily specialised. The
module instance is specialised (for address range, etc) by being connected to a
suitable modport on the APB_sys interface instance.

Likewise, our APB_UART module expects to see the standard signal name PSEL
for its bus select signal, but we wish to specify a particular decoded signal
UART_PSEL within the interface. A modport expression provides this renaming,
and also provides the UART with a much narrower (4-bit) part of the address,
since it only occupies a 16-word address range.

Decoding logic in the interface
Interfaces can contain always blocks and continuous assign statements,
allowing them to contain significant functionality. Here we have used a
continuous assign statement, together with SystemVerilog's convenient new
wild-equality test ==?, to create an address decoder.

Note Currently, interfaces are not permitted to contain module instances; but this is
likely to change in future revisions of the SystemVerilog standard, making it even
easier to incorporate non-trivial functionality inside an interface.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 27

interface APB_sys (
 input bit PCLK);

 logic PSEL;
 t_APB_a PADDR;
 ...
 wire UART_PSEL = PSEL & (PADDR ==? 'hACOFFEE?) ;

 modport mp_M (input PCLK, output PSEL, PADDR, ...);

 modport mp_UART (input PCLK,
 input .PSEL(UART_PSEL),
 .PADDR(PADDR[3:0]), ...);

 ...

interface APB_sys (
 input bit PCLK);

 logic PSEL;
 t_APB_a PADDR;
 ...
 wire UART_PSEL = PSEL & (PADDR ==? 'hACOFFEE?) ;

 modport mp_M (input PCLK, output PSEL, PADDR, ...);

 modport mp_UART (input PCLK,
 input .PSEL(UART_PSEL),
 .PADDR(PADDR[3:0]), ...);

 ...

module Top;
 bit clk;
 APB_sys apb (clk);
 Master inst_M(apb.mp_M, ...);
 APB_UART inst_U(apb.mp_UART, ...);
 ...

module Top;
 bit clk;
 APB_sys apb (clk);
 Master inst_M(apb.mp_M, ...);
 APB_UART inst_U(apb.mp_UART, ...);
 ...

Specialised modports

module APB_UART (
 APB_sys bus,
 ...);
 always ...
 if (bus.PSEL)
 ...

module APB_UART (
 APB_sys bus,
 ...);
 always ...
 if (bus.PSEL)
 ...

modport not
specified here
modport not

specified here

instantiation chooses modportinstantiation chooses modport

address decoding built into bus fabricaddress decoding built into bus fabric

specialised modportspecialised modport

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

28 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Modport expressions and generate

The previous page showed modport expressions being used to create a
specialised modport that nevertheless has the standard signal names from the
point of view of a connected module. Using the generate construct we can go
even further, and allow extensive parameterisation of the interface; modports
can be created in a generate construct.

We have kept the example very simple, but you can easily see how this idea can
be combined with the use of parameters to make very flexible interfaces that
have a configurable number of modports.

There is a little difficulty about the names of these generated modports, because
the generate construct creates a new scope. The slide shows how the
generated modports' names are determined. On the next page we will see how
to make use of these strangely-named modports.

But there is some bad news:

No current SystemVerilog tools support modports inside a generate construct!

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 29

Modport expressions and generate

interface Itf2;
 logic [1:0] V;

 modport M(input V);

 modport S0 (
 output .L(V[0]));

 modport S1 (
 output .L(V[1]));

endinterface

interface Itf2;
 logic [1:0] V;

 modport M(input V);

 modport S0 (
 output .L(V[0]));

 modport S1 (
 output .L(V[1]));

endinterface

• Avoid repeated modport declarations

interface Itf2_gen;
 logic [1:0] V;

 modport M(input V);

 generate
 genvar i;

 for (i=0; i<2; i=i+1)

 begin : Slaves

 modport S (

 output .L(V[i]));
 end : Slaves

 endgenerate

endinterface

interface Itf2_gen;
 logic [1:0] V;

 modport M(input V);

 generate

 genvar i;
 for (i=0; i<2; i=i+1)

 begin : Slaves

 modport S (

 output .L(V[i]));

 end : Slaves

 endgenerate

endinterface

• Modport names:

• inst.M

• inst.Slaves[0].S

• inst.Slaves[1].S

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

30 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Generating the attached modules

The modules that we will use to connect to the generated modports use a
convenient trick: by specifying a port of type interface.modport_name the

module is saying "I can connect to a modport called modport_name, no matter
what interface it is in".

We can use another generate loop to construct a collection of connected
modules, with the genvar iterator participating in the selection of modport for
each module. Once again, this arrangement could easily be parameterised.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 31

Generating the attached modules

• Modport names:

• inst.M

• inst.Slaves[0].S

• inst.Slaves[1].S

module Top;

 Itf2_gen inst_Itf2_gen();

 Master inst_M (inst_Itf2_gen.M);

 genvar i;

 for (i=0; i<2; i=i+1) begin : Slave_Insts

 Slave inst_S (inst_Itf2_gen.Slaves[i].S);

 end : Slave_Insts

endmodule : Top

module Top;

 Itf2_gen inst_Itf2_gen();

 Master inst_M (inst_Itf2_gen.M);

 genvar i;

 for (i=0; i<2; i=i+1) begin : Slave_Insts

 Slave inst_S (inst_Itf2_gen.Slaves[i].S);

 end : Slave_Insts

endmodule : Top

module Slave (interface.S iS);

 always
 iS.L <= ...;

endmodule : Slave

module Slave (interface.S iS);

 always
 iS.L <= ...;

endmodule : Slave

from previous slidefrom previous slide

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

32 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Address decoding in attached module

The previous few pages have suggested that modports can be specialised by
logic in the interface itself.

It is also possible to perform address decoding, and other specialisations, inside
the connected module. Of course, the module then needs to reflect the results
of this decoding back into the interface, where it could be used to control a
multiplexer for multi-source readback signals such as PRDATA. This is an
attractive idea because it suggests that we could make a completely generic bus
fabric interface, and specialise it by connecting an appropriate set of
parameterised modules.

The example opposite works as it stands, but does not really do all we want.
We would prefer to have a completely un-specialised – generic – interface; but
how would that interface gain the correct number and kind of modports? It is
easy to connect any number of modules to the same modport – we discuss that
in more detail on the next page – but then all the modules see exactly the same
set of signals, which doesn't help us with the problem of multi-source signals.

The SystemVerilog language does not provide a clear set of answers to these
problems, and the author hopes that some enhancements could be made in the
future to provide modports that in some way can be configured by the modules
that connect to them.

Meanwhile, we must add a parameter to the interface to specify how many
modports it must have. Clearly this mechanism will not work until we have tool
support for modport expressions and modports in a generate construct.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 33

Address decoding in attached module

• Requires modport expressions!

module APB_slave (
 #(My_Adrs = 24'hDEAD??)
 (APB.slave_mp bus, ...);

 assign bus.active = (bus.PADDR ==? My_Adrs);

module APB_slave (
 #(My_Adrs = 24'hDEAD??)
 (APB.slave_mp bus, ...);

 assign bus.active = (bus.PADDR ==? My_Adrs);

address range set by
parameter on module
address range set by
parameter on module

extra connection to interfaceextra connection to interface decoding logicdecoding logic

interface APB #(N_slaves = 1) (...);

 logic [N_slaves-1:0] decodes;
 ...
 genvar i;
 for (i=0; i<N_slaves; i++) begin : gen_slave_mp
 modport slave_mp (output .active(decodes[i]), ...);
 end

interface APB #(N_slaves = 1) (...);

 logic [N_slaves-1:0] decodes;
 ...
 genvar i;
 for (i=0; i<N_slaves; i++) begin : gen_slave_mp
 modport slave_mp (output .active(decodes[i]), ...);
 end

which slave is active?which slave is active?

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

34 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Singleton modports

Because of the problems of address decode specialisation and multi-source
signals, the approaches presented in the previous few pages are easily broken if
a user inadvertently connects more than one module to the same modport. The
author believes that SystemVerilog could benefit from an enhancement allowing
a modport to be specified as a singleton, so that at most one module can
connect to it.

The author has had interesting discussions with a colleague who pointed out
that in standard Verilog you would naturally expect to be able to connect any
number of modules to a single wire, and consequently we should expect the
same of modports. The author's opinion is that modports offer a much more
structured connection scheme than does a wire, and therefore the singleton
property is valuable. You, gentle reader, must make up your own mind!

In the printed paper, several possible workarounds are discussed; none is totally
satisfactory. During the DVCon conference, Don Mills offered another approach
based on the fact that SystemVerilog permits only one continuous assignment to
any variable; the author plans to investigate this in more detail and publish the
results in due course on the Doulos website.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 35

Singleton modports

• Modports are promiscuous

• Any number of clients can hook to the same modport instance

• Bad fit with typical modern bus structures

• Disastrous for methodologies presented here

• Solutions discussed in the printed paper, none entirely satisfactory:

• use of uwire

• very limited tool support at present

• exported function

• not supported by synthesis tools

• client writes to an interface variable

• singleton enforced by synthesis, not by simulation

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

36 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

Conclusions

Interfaces are valuable both for modelling and for synthesis using today's tools.
The approach suggested on page 20 (bus fabric module with point-to-point
interfaces) offers a good way to exploit many of their advantages without
stretching the capabilities of current tools.

Meanwhile, the author hopes that this paper will provide food for thought both for
users and for tool vendors; in particular he looks forward to the availability of
modport expressions and generated modports in practice.

The lack of support for singleton modports in the SystemVerilog language
restricts users' ability to build truly robust configurable designs using interfaces.
There is further work to do in this area, and such work may perhaps lead to
future enhancements of the language.

Questions? If you have further questions on this paper, please feel free to email the author
at the address on the front page; he will always endeavour to respond promptly.

Acknowledgements
The author would like to thank his colleagues for their consistently insightful
support, and also the following people for their special contributions:

• Bruce Mathewson of ARM Ltd who brought the "bus fabric module"
technique to my attention;

• Cliff Cummings of Sunburst Design Inc., for his careful review of the original
paper and his enthusiastic encouragement;

• Don Mills of Microchip Technology, Inc for his useful insight concerning
singleton modports.

Reprint 27-Feb-2007 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved 37

Conclusions

• Interfaces are synthesizable!

• Interfaces are useful today for point-to-point and multi-drop buses

• Lack of tool support for modport expressions is a disappointment

• They offer great opportunities for bus fabric modelling

• Lack of language support for singleton modports is unfortunate

Questions?Questions?

Notes

Towards a Practical Design Methodology with SystemVerilog Interfaces and Modports DVCon 2007

38 Copyright © 2007 DVCon and Doulos Ltd. All Rights Reserved Reprint 27-Feb-2007

