A

4

DOULOS

Doulos Verification TechNote 3:
Observing Activity in
VMM and OVM Testbenches

Welcome...

to Doulos Verification TechNotes, an occasional series of articles on topics that
we at Doulos hope will be of interest to anyone involved in verification of digital
designs. Rather than trying to duplicate the plentiful tutorial and reference
material that's already available, we wanted TechNotes to take a thought-
provoking sideways look at some of the issues we think are most interesting in
the world of verification. We hope you'll agree.

Verification TechNote articles are backed up by simple working code examples
on our web site, where you can also find downloadable PDF copies of the
articles themselves. They are available, together with many other SystemVerilog
resources including conference papers and tutorial examples, at

www.doulos.com/knowhow/sysverilog

You can also find information about worldwide availability of our training
courses featuring SystemVerilog, OVM and VMM, along with online sales of the
highly respected Golden Reference Guide series, at

www.doulos.com/systemverilog

Feedback

We welcome feedback on the content of these TechNotes. If you have any
comments, or ideas for topics you would like to see in future editions of
Verification TechNotes, please contact us by email at info@doulos.com.

Copyright © 2009 by Doulos. All rights reserved. i

All trademarks are acknowledged as the property of their respective owners.
Information in this booklet is provided "as is" and without warranty of any kind.

You are welcome to make a reasonable number of copies of this material for
your own personal use or to share with colleagues, but any copy must include
the Doulos logo and the whole of this copyright notice.

ii Copyright © 2009 by Doulos. All rights reserved.

Verification
TechNote 3

Observing Activity in VMM
and OVM Testbenches

This Doulos Verification TechNote takes a look at techniques for moving data
around a SystemVerilog testbench built using VMM or OVM. We'll focus on
what happens when you want to extract information about device-under-test
(DUT) activity and pass on that information to other processing blocks
elsewhere in the testbench.

OVM and VMM both provide flexible, straightforward mechanisms for capturing
this observed information and sending it to other parts of the testbench - but,
confusingly, each provides more than one method! We will look closely at all
these techniques and decide which is most appropriate for dealing with
observed or monitored data that must be collected or analyzed elsewhere in the
testbench.

Working example code illustrating the ideas described here can be downloaded
from the Doulos web site:

www.doulos.com/knowhow/sysverilog

Copyright © 2009 by Doulos. All rights reserved. 1

Observing Activity in
VMM and OVM Testbenches

For example...

Suppose you're verifying a nifty new video compression unit for video-over-
Ethernet. Your testbench will generate a stream of video images and feed it to
your DUT. It will also monitor the output data, which takes the form of a
stream of TCP/IP packets.

Your company has been in the video processing business for quite a while, so
you already have verification components for the video and packet-data
interfaces. Those verification IP blocks have proven their worth on earlier
projects, so you don't want to mess with them. But you need to pull out the
data they observe on their respective interfaces, so you can feed that data into
your reference model - rather like this diagram:

reference
model or
comparator

data coverage

source

JEESEL ¢
l observation
«
driver monitor
BFM BFM
DUT

Figure 1: Outline of testbench for typical DUT

2 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

There are many details missing from this picture. In particular, the precise form
of the existing verification IP blocks will depend on whether you use OVM or
VMM as your testbench methodology. But one thing is certain: when those
blocks were written, the writer definitely did not know that they were going to
be used in precisely this configuration, with precisely this reference model and
coverage analysis block. How, then, can we hook-in to those components to
extract the information our new testbench will need?

Not surprisingly, the answer depends strongly on your choice of VMM or OVM.
However, the central problem is the same in both cases: how do I pick up
observed data from an existing verification component, without disturbing the
code of that component?

Requirements for observation

As we have already mentioned, we most definitely do not want to touch the
code of the existing verification components. They are already doing a great
job for us, driving stimulus on to the DUT (in the case of the driver block) and
checking that the DUT is correctly obeying the relevant interface protocols. As
part of this work, they will of course observe all activity on the interface. That
makes it easy for them to reconstruct appropriate data objects (transactions)
representing the information flowing through that interface. But what should
the verification component do with each observed transaction?

Sending the transaction to another part of the testbench

Monitored transaction data is not much use if it remains hidden away inside a
verification IP block (VIP). It's important for the block to send it out into the
testbench, so that other components (like our coverage block and our reference
model) can see it. However, the VIP was written without any knowledge of
where the data should go. Should it be sent to one external block? Two?
None? What kind of block expects to receive the data? Obviously we need a
very flexible way to get transaction data out of such a VIP. Not surprisingly, the
Big Two verification methodologies OVM and VMM have established ways of
doing exactly that. As we shall see, in both cases there is a standard way to
convey transactions around a testbench structure, but in both cases that
method is not ideally suited to the needs of observation. Consequently they
both provide alternative methods (two such methods, in the case of VMM) that
are a better match to the requirements for observation.

Copyright © 2009 by Doulos. All rights reserved. 3

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Both methodologies assume that you will build up your testbench from blocks,
known as components in OVM and transactors in VMM. Of course, it is
essential that the connection mechanism be very general-purpose so that you
can design those blocks independently, without knowing in advance how they
will be used - the blocks should be highly decoupled. The way that decoupling
is achieved is one of the central differences between VMM and OVM.

In the remainder of this TechNote we will survey the component-to-component
communication mechanisms in both OVM and VMM, and highlight how these
mechanisms can ease the addition of observer components to your testbench.

4 Copyright © 2009 by Doulos. All rights reserved.

A

4

DOULOS

Moving data around an OVM testbench

Each interface to the DUT needs a monitor to observe its activity. Interfaces
that will be stimulated by the testbench also need a driver to provide DUT
inputs, and a stimulus generator to provide a stream of transactions for the
driver to use. In the world of OVM this arrangement, of a monitor together
with an optional driver and stimulus generator, is usually bundled into a kind of
super-component known as an agent. Figure 2 shows the OVM agent
architecture in outline. The shaded area enclosing the sequencer and driver
blocks indicates that those blocks are provided only for an instance of the agent
that will generate stimulus- an active agent. An instance that does not
generate stimulus is known as a passive agent and has only the monitor
component. Agents are designed so that the choice of active or passive
configuration can be made at run-time, under the control of a command-line
option or other configuration data.

analysis port
A
sequencer
. monitor
driver |
« i |

Figure 2: OVM agent architecture

Copyright © 2009 by Doulos. All rights reserved. 5

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Whenever you read about OVM you are sure to come across the phrase
transaction-level modeling (TLM) or transaction-level connection. In this
Verification TechNote we assume you're familiar with the key ideas of TLM. If
you would like an introduction or refresher on this important topic, take a look
at our TechNote Making Sense of Transaction Level Modeling in OVM.

The connection between sequencer (stimulus generator) and driver (BFM) in this
agent is of course a TLM connection. Whenever the driver needs another
transaction data item, it calls the get method in its sequence item port,
indicated by a square bubble on the diagram. At the other end of the TLM
connection, the sequencer provides a get method and makes that method
available through its sequence item export (the round bubble on the diagram).
Finally, the enclosing agent takes responsibility for linking the port and export
together, using OVM's built-in connection mechanism. The overall effect is that
the driver can call a get method in the sequencer, but neither component
knows any details of the other. Each component thinks it's working through its
own port or export, and is completely independent of what is connected to it.

TLM connections like this are ideal for testbench applications where the overall
structure of verification components is known. Each TLM connection is point-to-
point, connecting just one port (on the block that calls a method) to one export
(on the block that provides that method's implementation). That does not fit
comfortably with the needs of observation, where it may be essential for more
than one component to observe the same set of data. For example, in Figure 1
our stimulus source must send its observed data not only to the reference
model but also to a coverage collection block. We need the observed data to
be broadcast so that any number of such components (including, possibly, none
at all) can connect to a monitor so that all those components receive the same
observed data.

To see how OVM manages broadcast of observed information from one
component to others, we must shift our attention to the open diamond shape
at the top right of Figure 2, the analysis port. \Whenever our agent's monitor
observes a new transaction, it calls the write method of this port. Any other
testbench component that is connected to this analysis port can see the
observed transactions.

6 Copyright © 2009 by Doulos. All rights reserved.

A

DOULOS

What's the difference between analysis ports and port/export
connection?

That's not really a fair question, because OVM's analysis ports are just one
special case of the overall port/export connection mechanism. However,
analysis ports are sufficiently different from ordinary TLM ports that they can
almost be considered to be a distinct mechanism in their own right.

Conventional TLM ports are point-to-point; each port is connected to precisely
one export, and vice versa. By contrast, analysis ports are broadcast: a single
analysis port can be connected to zero, one or many analysis exports (but each
analysis export connects to precisely one analysis port). Figure 3 shows some of
the possibilities.

subscriber 1 subscriber 2 | | subscriber 3 | | subscriber 4

&

monitor 1 monitor 2 monitor 3

Figure 3: Analysis ports are broadcast

Recall that each monitor will call its analysis port's write method whenever it
has a new observed transaction. In the case of monitor 1, this call has no effect
because there are no connected subscribers.

When monitor 2 calls its port's write method, the call is automatically passed
on - through the subscriber's analysis export — to a write method
implemented in subscriber 1, with the observed transaction as an argument to
the method. This method can, of course, do anything the subscriber needs it to

Copyright © 2009 by Doulos. All rights reserved. 7

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

do. It could log the transaction to a file, gather coverage, or compare the
transaction against an expected value from a reference model.

Finally, when monitor 3 calls its analysis port's write method, the
corresponding write methods of all three connected subscribers are called
with the same transaction argument. The monitor is completely unaware of
this; it simply calls its own port's write method and everything else happens
automatically.

Timing of put/get and analysis connections

We have seen that OVM analysis ports are broadcast. A monitor or other
observer can equip itself with an analysis port, and call that port's write
method whenever it has data that might be interesting to other parts of the
testbench. Any number of subscribers can now be connected to that analysis
port, and all subscribers will see the same observed data.

There is, though, another sense in which analysis ports are special. When data
is written through an ordinary TLM port, the writer (producer) will use either the
put or try_put methods of the port. Using put, the producer will be stalled
while the consumer's put method implementation does its work. When the
consumer's put method eventually returns, the producer's put call will
complete in its turn. This arrangement allows for blocking, synchronous
communication between components, with a guarantee that the data has
indeed been conveyed by the time the put call returns.

However, the producer might have other things that it wishes to do while the
consumer goes about its business. For such situations OVM provides
nonblocking ports. Typically a data producer would call its port's try_put
method. This method is guaranteed to return without delay, but it will return a
true/false result indicating whether the put attempt succeeded. If it was
successful, we know for sure that the consumer has the data (perhaps stored in
an internal buffer); but we do not know whether it has finished dealing with
that data, and we probably need some other interaction to find out when the
consumer is done. If the try_put attempt failed, we know that the data was
not transferred; our component should then go away and do some other work
before trying again.

For an analysis port the story is rather different. Its write operation is non-
negotiated: it can never block or consume simulation time, and it has no notion

8 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

of success or failure. The only guarantee it offers is that the write method in
every connected analysis export is called with the same argument data.

Rules for using analysis data

This special behavior of the analysis port imposes some obligations on its data
consumers (subscribers):

e A subscriber's write method must be a function, and therefore must
execute in zero simulated time. Similarly, a subscriber must be ready to
accept new data at any time. In many cases this can be achieved by
building a suitable FIFO buffer into the subscriber.

e A subscriber must never modify the contents of the transaction object it is
given, because the same object may be passed on to other subscribers.

e If a subscriber intends to store the transaction object, it must create and
store a copy. There is no guarantee that the analysis data will remain valid
after the write call has completed. A subscriber that stores a written
transaction, without copying it, will probably find that some other part of
the testbench has corrupted that transaction by the time the subscriber
gets around to using it.

None of these requirements is especially onerous. Respecting them is essential,
though, because the effects of getting them wrong can be subtle and extremely
hard to detect.

Copyright © 2009 by Doulos. All rights reserved. 9

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Moving data around a VMM testbench

In the world of VMM, connections between verification components - known as
transactors in VMM - are handled in a rather different way than in OVM.
Decoupling of transactors is primarily achieved by means of channels, which
provide the standard way for transactors to communicate with one another.
But there are two other mechanisms available: notification and callback. As we
shall see, any of these three mechanisms can be used for observation, but some
are more appropriate or convenient than others.

data source data consumer
transactor channel transactor

vmm_scheduler vmm_broadcast
EIT chanmel
11 channel transactor | channel L
Lo Lo
P P

Figure 4: Channel communication in VMM

Figure 4 shows various ways of using channels in VMM. In each case, the
transactor at each end of the channel has a public data member that is a

10 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

reference to the channel; in this way, the enclosing environment can easily set
up the required connections.

The upper diagram in Figure 4 shows the most straightforward use of a
channel, to convey data from producer to consumer transactor. Even in this
simple arrangement, channels offer a rich set of options. The channel is
basically a FIFO for transaction objects, but it has many interesting and useful
features that we don't have space to investigate here. In many situations it is
appropriate to limit the channel's FIFO depth to only one, so that the producer
and consumer are tightly locked together.

The lower part of Figure 4 shows how channel data can be replicated across
multiple channels using the two specialized built-in transactor classes
vmm_broadcast and vmm_scheduler. As its name suggests,
vmm_broadcast simply replicates the incoming channel's data across all its
output channels (although even this simple operation is highly configurable).
vmm_scheduler allows two or more incoming channels to compete for slots
in its outgoing channel - it is a multiplexer. Again, as you might expect, its
operation is highly automated and configurable.

Using a channel for observation

An observation component such as a monitor BFM can use a channel to deliver
its observed data. However, some care is needed. A monitor BFM is by nature
purely passive, and has no way to throttle or otherwise delay the flow of
information on the physical connection it is monitoring. Consequently it is
essential for the monitor to deliver each observed transaction to its output
without any delay, so that the monitor can immediately get back to the time-
critical business of snooping its connection.

An obvious way to accomplish this would be for the monitor's output channel
to have unbounded FIFO depth. This would work well, but what happens if
someone mistakenly connects a 1-place FIFO to the monitor's output? The
monitor would no longer work reliably. Instead, it is better for the monitor to
write observed data into its output channel using the channel's sneak method.
This mechanism allows the monitor to use any channel as if it had unbounded
depth; the sneak operation takes zero time and is guaranteed to succeed,
even if it "overfills" the channel.

Copyright © 2009 by Doulos. All rights reserved. 1

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Indeed, then, it is feasible to use VMM channels for observation. However, you
have probably already sensed that it may be a little clumsy by comparison with
the very flexible OVM analysis mechanism. Adding multiple consumers for the
observed data is likely to disrupt the top-level test environment significantly,
adding a vmm_broadcast component and several channels. It would be
good to find an approach that more readily supports multiple subscribers.

Exposing observed data using the VMM notification service

A key feature of VMM's infrastructure is the notification service. This is a
global, testbench-wide mechanism that allows a component to signal its status
to any interested observer anywhere in the testbench. Every transactor is
expected to have an instance, named notify, of the vmm_notify class.
You don't need to create this instance, because it is a property of the
vmm_xactor base class. However, it is necessary for your transactor to
register all the notifications it wishes to use. There are three distinct kinds of
notification, all managed by the same underlying service:

e ONE_SHOT notifications, which work just like regular Verilog events;

e BLAST notifications, which work around some possible race conditions by
providing functionality equivalent to the behavior of SystemVerilog's
walt (some_event.triggered),;

e ON_OFF notifications, which provide a Boolean flag (and the means to wait
for changes on it).

For example, you might choose to create a notification to indicate that your
BFM is currently in a wait state. That would be an ON_OFF notification because
it's a simple status flag. Alternatively, you could create a notification to mark
when a cache line refill has just completed; that would be a ONE_SHOT
notification because it's an event that fires at a specific moment in time.

To maximize flexibility, user-created notifications have integer identifiers so that
it is very easy to create a new notification whenever you need one - but, in
practice, a transactor's notifications will all be created at the time the transactor
is constructed. All the notifications registered by a given transactor must have a
unique integer identifier within that transactor, but fortunately it is easy to
arrange this when creating the notification. Here's one way to do it:

12 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

class my_monitor_BFM extends vmm_xactor;

// Variables used to label my new notifications
int IN_WAIT_STATE;
int CACHE_REFILL_DONE;

// Notifications will be created in the constructor
function new(...);
super.new(...);

// Create the new notifications
IN_WAIT_STATE = notify.configure (
// ask VMM to give unique ID
.notification_ID(-1),
// this is a flag notification
.sync (ON_OFF));
CACHE_REFILL_DONE = notify.configure (
.notification_ID(-1),
// this is an event
.sync (ONE_SHOT));

Having created an integer variable to hold each notification ID in this way, we
can in the future simply use that variable's name as if it were the name of the
notification. For example, on discovering that a cache refill had completed,
some method of the BFM might trigger the notification thus:

this.notify.indicate(CACHE_REFILL_DONE) ;

Carrying data along with the notification

We have seen how to create and fire a notification, but how can we use this to
help with the observation problem? The answer lies in the notification service's
ability to tag a notification with auxiliary data. You will not be surprised to
learn that this auxiliary data is a vmm_data reference, so it can carry any
transaction data object. It is simply passed as a second argument to the
indicate method:

this.notify.indicate(CACHE_REFILL_DONE, observed_data);

Copyright © 2009 by Doulos. All rights reserved. 13

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Any code that waits for the notification, using the corresponding wait_for
method, can also retrieve the auxiliary data by immediately calling the
notification's status method. Clearly this offers a straightforward
nonblocking data broadcast mechanism, well suited to exposing observation
data from a monitor.

Subscribing to a notification

So far we have only discussed firing (indicating) a notification. Naturally, that's
done by the same class that owns the notify object, so it's just a matter of
calling this.notify.indicate(..). A subscriber object, however, is
outside the observer that's doing the notifying. How does such a subscriber
detect the notification? It must call the wait_for and status methods of
the observer's notify object, taking care to use the correct notification ID.
But this should set your mental alarm bells ringing: if one component needs to
know about another one, how can it be re-usable?

The key is to provide your subscriber with a reference to the monitor. This
reference will be populated by the environment class, which of course knows
about both the subscriber and the monitor. The subscriber remains re-usable.

class my_subscriber extends vmm_xactor;

my_monitor_ BFM cache_mon;

Now, when the subscriber wishes to collect observed data from the monitor, it
can reach through that reference:

cache_mon.notify.wait_for (cache_mon.CACHE_REFILL_DONE) ;

Ah, but what happened to the auxiliary data? Now that we have detected the
notification, we can collect that data using the notifier's status method:

$cast (cache_data,
cache_mon.notify.status (cache_mon.CACHE_REFILL_DONE)) ;

Notice that we needed to use $cast because the status method returns a
result of vmm_data base type, but our cache_data item is presumably of
some derived type.

14 Copyright © 2009 by Doulos. All rights reserved.

A

4

DOULOS

Using Callbacks

VMM offers a third mechanism for making data accessible: callbacks. It is
probably the most attractive of all, because it offers a clean solution to the
problem of how to decouple the monitor and subscriber classes so that both are
re-usable, and it easily supports zero, one or more subscribers.

Transactors should have callback points

Any well-written VMM transactor, including our monitor, should have various
callback points in its main thread of execution. In essence, whenever the
transactor does anything that might be interesting to other parts of the
testbench it should do a callback. You can think of the callback as a call to an
empty function, giving you the chance to fill in the code for that function so
that it does whatever you want it to do- without affecting the original
transactor.

class my_monitor extends vmm_xactor;

task main () ;
my_transaction tr;

forever begin
// detect transaction on physical interface
out_chan.sneak (tr); // sendit

“vmm_callback(..,| observe (tr));

end

‘ function void observe
(my_transaction tr);
// do whatever you want with tr
’ endfunction

Figure 5: Callbacks allow for easy addition of user code

Copyright © 2009 by Doulos. All rights reserved. 15

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Callback facade class

In reality it is not sufficient for the callback to call an empty function. It is better
to call a method of an object, because it is then easy to extend that method by
using a derived-class object in place of the base-class object. But where should
that method be? VMM expects you to write a callback facade class to
encapsulate the set of methods that will be called by a given transactor's
callbacks. Putting the callback methods into a class brings important benefits.
Making the methods virtual (and, indeed, empty) allows you to write the
callback fagade class at the same time as you write the transactor, which then
simply needs to know the names and argument lists of those methods. You
can then create derived versions of the callback facade class, to provide
application-specific implementations of any or all of those methods, without
disturbing the original transactor in any way. Figure 6 shows a skeleton of the
code you would need to write to do this.

16 Copyright © 2009 by Doulos. All rights reserved.

A

DOULOS

Transactor and its callback facade are written together

class my_monitor extends vmm_xactor;

task main();
my_transaction tr;
forever begin
// detect transaction on physical interface

out_chan.sneak (tr); // sendit

“vmm_callba observe (tr));

end

class my_monitor_callbacks
extends vmm_xactor_callbacks;
iL1e 1 function void observe
(my_transaction tr);

endfunction
endclass

class logging_cb
extends my_monitor_callbacks;
function void observe
(my_transaction tr);
“vymm_info (... Testbench-specific
callback extensions

class checking_cb
extends my_monitor_callbacks;
function void observe
(my_transaction tr);
assert (tr.compare(...

class coverage_cb
extends my_monitor_callbacks;
function void observe
(my_transaction tr);
cover_object.do_coverage (tr);

Figure 6: Writing and extending a callback facade

Copyright © 2009 by Doulos. All rights reserved. 17

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

Registering your callbacks with the transactor

We have now seen how to create customized extensions of a transactor's
callback facade. Now we must arrange to attach the appropriate extensions to
a specific transactor instance. The transactor's enclosing environment class
should take responsibility for doing this as part of its build method.

First, we must create instances of our extended callback classes alongside the
transactor instance. Then we register those instances with the transactor,
adding them to the transactor's list of callback objects so that their methods will
be called automatically whenever the transactor invokes the " vimm_callback
macro.

class my_environment extends vmm_env;

logging_cb log_cb;
checker_cb check_cb;
my_monitor monitor;

function void build();

monitor = new(..); // build the transactor
check_cb = new; // build callback objects
log_cb = new;

// register your custom callback objects with the transactor
monitor.append_callback (log_cb);
monitor.append_callback (check_cb);

The callback objects are now acting as subscribers to the monitor's callbacks.
Functions in each callback object are automatically called whenever the monitor
has interesting information to share. Any number of subscribers (including
zero) can be registered with the monitor, in much the same way that any
number of OVM subscribers can be connected to a monitor's analysis port.

Making the callbacks fully VMM compliant

To keep our description and examples simple, we have ignored a few details
that are necessary to make your callbacks fuly VMM compliant. Most

18 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

importantly, whenever a transactor calls one of its callbacks it should provide a
reference to itself (this). That provides two important pieces of functionality:

e A single callback object can be registered with more than one transactor.
The callback function can use the transactor reference to determine which
transactor was responsible for a given callback invocation.

e The callback method now has the means to look back into the calling
transactor to find other information that was not necessarily supplied as
part of the callback method's argument list.

VMM imposes a number of other rules and recommendations. In particular:

e Callbacks that must be nonblocking should be coded as void functions, not
as tasks. This is by far the most common case; it is very unusual for a
callback to interfere with the timing of a transactor. For monitor
transactors, all callback methods should be functions so that they cannot
consume time.

e Callbacks can have transaction arguments that are qualified const. This
prohibits the callback method from modifying the contents of the
transaction. For stimulus-generating transactors it may be useful to allow
callbacks to modify transaction data, perhaps to perform error injection or
payload modification. Monitor transactors, on the other hand, simply
report what they see and it is usually inappropriate for a callback to modify
this information. Consequently, the callback facade for a monitor
transactor should have methods looking like this:

virtual function void observe (
const my_monitor caller,
const my_transaction tr);

Copyright © 2009 by Doulos. All rights reserved. 19

INAO pue WA ut Ay Buiniasqo [

Observing Activity in
VMM and OVM Testbenches

In summary...

It is important to be able to add new observation components to a testbench
without disrupting the existing structure of components and connections. Both
OVM and VMM provide mechanisms that make this possible.

OVM

In an OVM environment, observed transaction data should always be exposed
through an analysis port so that any number of subscribers may connect
themselves to the port and see that observed data. New subscribers can be
added without affecting the existing testbench structure; it is merely necessary
to instantiate the subscriber, and connect the appropriate monitor's analysis
port to the new subscriber.

VMM

In a VMM environment there are at least three possible methods that a monitor
can use to publish observed transaction data:

e sneaking the data on to an output channel;

e raising a notification, with the transaction provided as the notification's
status data;

e invoking a callback.

Of these three methods, Doulos recommends callbacks as being the most
elegant, scaleable and flexible. New callback subscribers can be added without
affecting the structure of an existing testbench, and subscribers and monitors
can be almost completely decoupled because the callback facade class defines
the interface between them.

20 Copyright © 2009 by Doulos. All rights reserved.

