A

4

DOULOS

Doulos Verification TechNote 2:
VMM Productivity Enhancements

Welcome...

to Doulos Verification TechNotes, an occasional series of articles on topics that
we at Doulos hope will be of interest to anyone involved in verification of digital
designs. Rather than trying to duplicate the plentiful tutorial and reference
material that's already available, we wanted TechNotes to take a thought-
provoking sideways look at some of the issues we think are most interesting in
the world of verification. We hope you'll agree.

Verification TechNote articles are backed up by simple working code examples
on our web site, where you can also find downloadable PDF copies of the
articles themselves. They are available, together with many other SystemVerilog
resources including conference papers and tutorial examples, at

www.doulos.com/knowhow/sysverilog

You can also find information about worldwide availability of our training
courses featuring SystemVerilog, OVM and VMM, along with online sales of the
highly respected Golden Reference Guide series, at

www.doulos.com/systemverilog

Feedback

We welcome feedback on the content of these TechNotes. If you have any
comments, or ideas for topics you would like to see in future editions of
Verification TechNotes, please contact us by email at info@doulos.com.

Copyright © 2009 by Doulos. All rights reserved. i

All trademarks are acknowledged as the property of their respective owners.
Information in this booklet is provided "as is" and without warranty of any kind.

You are welcome to make a reasonable number of copies of this material for
your own personal use or to share with colleagues, but any copy must include
the Doulos logo and the whole of this copyright notice.

ii Copyright © 2009 by Doulos. All rights reserved.

Verification
TechNote 2

VMM Productivity
Enhancements

This Doulos Verification TechNote highlights the productivity macros that have
been added to recent releases of the VMM Standard Library. These new
features are completely optional, and therefore have no compatibility impact on
your existing VMM code. For any new code, though, they offer a dramatic
reduction in programming effort, removing the need to write error-prone and
time-consuming boiler-plate code in every new class you create.

Readers of this TechNote should already have some familiarity with the VMM
Standard Library, perhaps from constructing some verification components or
from customizing an existing testbench.

As always, your primary resource for VMM is the community site:

www.vmmcentral.org

Additional SystemVerilog verification resources can be found on the Doulos site:

www.doulos.com/knowhow/sysverilog

Copyright © 2009 by Doulos. All rights reserved. 1

VMM Productivity Enhancements

The need for automation

As soon as you begin to write your own VMM code, you recognize how much
of that code is necessarily repetitive. For example, suppose you wish to create a
new transaction data class. Of course you base it on the vmm_data class, with
your own extensions.

Very soon, though, you will find that your extensions - the part of the new class
that does your real work — accounts for only a small part of the code you need
to write. Much of the derived class code is apparently unproductive
bureaucracy although, of course, you know that you must create it so that the
VMM infrastructure can use your new data class correctly.

An especially frustrating example is the allocate method, which is a
mandatory part of any vmm_data extension. Here's what it must look like:

class my_extended_data extends vmm_data;

virtual function vmm_data allocate();
my_extended_data it = new();
return it;

endfunction

Although this is so straightforward, you nevertheless have no choice but to
write it yourself. The required code pattern is exactly the same for any derived
vmm_data class, but you cannot rely on a base-class implementation because
the data type of the variable 1t must match the derived class you are creating.
Similar needs arise with the constructor new and with several other standard
VMM methods such as copy, but the allocate method is especially
frustrating because it contains absolutely no code that relates to your own
custom extensions.

You probably know already that the VMM software distribution comes to the
rescue with its vmmgen script. You can use vmmgen to create the skeleton of
your derived class, with much of the boiler-plate code already written for you,
leaving you to complete the interesting part — the custom extensions that make
your derived class behave in the way you want. However, many people feel a

2 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

little uncomfortable using code-generating scripts such as vmmgen. They may
generate superfluous code that you must remove for your specific requirements,
adding to the risk of accidentally introducing errors. Furthermore, since
vmmgen knows nothing about your custom data extensions, it cannot fully
automate the creation of some data-dependent methods such as compare and
copy. A more complete solution to this problem would bring real benefits.

Automation using macros

The VMM Standard Library makes heavy use of Verilog *define macros to
automate the construction of some user code. Take, for example, the
vmm_channel macro. This macro, usually invoked at the end of the file that
creates a user-specified extension to vmm_data, automatically writes the code
for a new channel class that is customized to carry transactions of the new user-
defined data class.

Two even larger macros, " vmm_scenario_gen and 'vmm_atomic_gen,
are generally used in the same way as *vmm_channel; they automatically
create class definitions for an atomic random generator and a scenario
generator, again both customized for the newly defined data class. Other,
slightly less spectacular, macros are used to simplify a user's life when writing
message output code, callback invocations and so on.

Macros, macros...

VMM users are familiar with macros. Everyone agrees that macros are a
necessary evil: they bring huge benefits in convenience and portability, but they
can easily lead to code that is hard to understand and even harder to debug. In
the VMM Standard Library, however, the macros are robust and their purpose is
clear, so users are not afraid to exploit them.

Given this background, it will come as no surprise to find that the new facilities
for automating boiler-plate code in derived classes make heavy use of macros.

Copyright © 2009 by Doulos. All rights reserved. 3

SyuUsWadURYUT AIAIDNPOId ININA H

VMM Productivity Enhancements

Automation of vmm_data extensions

Any attempt to automate some of the work of building custom vmm_data
derived classes must deal with at least two problems:

e Some standard patterns of code, such as the allocate method, must be
created and adjusted to match the newly written class. This requirement is
fairly straightforward, because the new class name can be provided as an
argument to a suitable code generation macro.

e Some methods, such as the copy method, must manipulate individual
fields (data members) of the new class in various ways. This is more
difficult, because it requires a macro to generate configurable patterns of
code for each field in turn.

At the 2008 Synopsys User Group (SNUG) meeting in Munich, Germany, a
group of expert VMM users presented a paper describing how they had met
some of these automation challenges:

Kevin Hyland and Vishal Patel:
Super vmm_data! Automating vmm_data methods in data structures.
SNUG Europe 2008. Available at www . snug-universal.org

However, in roughly the same time-frame (late 2008) the VMM Standard Library
was enhanced with a new set of macros designed to handle exactly these
issues, not only for vmm_data but also for many of the other important VMM
base classes.

Getting started with the automation macros

Let's begin with a very simple example of a user—defined transaction data class
based on vmm_data. Suppose our data class needs three data members:

rand logic [7:0] data;
rand bit enable;

rand enum { READY, WAITING, DONE } mode;

Here is a complete implementation of our new data class:

4 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

class sample_data extends vmm_data;

rand logic [7:0] data;
rand bit enable;
rand enum { READY, WAITING, DONE } mode;

// add your randomization constraints here

‘vmm_data_member_ begin (sample_data)
“vmm_data member scalar (data, DO_ALL)
“vmm_data member scalar (enable, DO_ALL)
“vmm_data member enum(mode, DO_PRINT+DO_COPY)

‘vmm_data_member_ end (sample_data)

‘vmm_data_byte_size (2, 2)

endclass

The new automation macros are shown in bold. As you can see, the amount of
work required to create a new vmm_data class has been dramatically cut. In
simple cases it is sufficient to add your own data members and constraints, and
then invoke the appropriate automation macros, as we have done here.

What are the macros doing?

Working together, the group of macro invocations in our example creates:
e 3 static instance of vimm_1og, as required for all vmm_data classes;
e standard implementations of new, allocate and is_valid methods;

e customized implementations of the remaining key methods psdisplay,
copy, compare, byte_pack and byte_unpack

Some of this work is completely automatic and is based only on the new class's
name. However, many of the methods may have subtly different behaviors on
different user-defined data members. In our example, the enumerated field
mode should be displayed and copied along with the other fields. but it should
not participate in compare and pack operations because it is not part of the
core data that will be transferred to or from a DUT. To cope with this
requirement, each vmm_data_member... macro (except for begin and
end) has a second argument that specifies how this particular field should be

Copyright © 2009 by Doulos. All rights reserved. 5

SyuUsWadURYUT AIAIDNPOId ININA H

VMM Productivity Enhancements

handled. The simplest approach is to specify DO_ALL for this second
argument, indicating that the field should participate in all the methods. For
our mode field, however, we specified DO_PRINT+DO_COPY indicating that
this field should participate only in psdisplay and copy methods, and
should be skipped (ignored) by the other automatically-created methods. As
you might imagine, the predefined constants DO_PRINT, DO_COPY and so
forth are bit-masks that can be added or OR'd together. Alternatively, you can
specify that a field should participate in all operations except those you specify,
by subtracting bit-masks: DO_ALL-DO_PRINT would specify that a field should
participate in all methods except psdisplay.

There is a summary of the available bit-mask constants in the VMM User Guide
under the heading vmm_data: :do_what_e (the name of the enumeration
type that specifies the various constants).

Types of field

The handling of each data member depends somewhat on its data type. In
particular, arrays, enumerations and strings require special arrangements.
Consequently you must be careful to choose the correct automation macro for
each of your fields.

The table on the next page summarizes the different vmm_data_member
macros that are available to specify each field. Don't forget, though, that the
list of such macros must begin with an invocation of
vmm_data_member_begin and finish with vmm_data_member_end. As
always when using complex macros, if you get this wrong you will encounter
some very bizarre and confusing compiler error messages!

Note, too, that you must not add any code of your own between the various
macro lines. These macros do not stand alone; each of the field macros creates
just a small part of the code of a large and complicated function, and it is very
important that you should not interfere with this process.

6 Copyright © 2009 by Doulos. All rights reserved.

£

Summary of available vmm_data_member macros

A\

DOULOS

vmm_data_member_ ...

used for:

...scalar

Any integer-like or vector field (either 2-
state or 4-state) such as bit, logic,
integer, reg [7:0] etc, up to a
maximum of 4096 bits

.scalar_array

Any fixed-size unpacked array of scalar

.scalar_da

Dynamic array of any scalar

.scalar_aa_scalar

Associative array of any scalar, with a
scalar index type

.scalar_aa_string

Associative array of any scalar, with a
string index type

.string
.string_array
.string_da
.string_aa_scalar
.string_aa_string

Similarly for variables and arrays of string
type

.enum
.enum_array
.enum_da
.enum_aa_scalar
.enum_aa_string

Similarly for variables and arrays of any
enumeration type

.vmm_data
.vmm_data_array
.vmm_data_da
.vmm_data_aa_scalar
.vmmm_data_aa_string

Similarly for variables and arrays of any
class type based on vmm_data - useful
when you have data objects that contain
instances of other such objects. See
further details on the next page.

.handle

. .handle_array
.handle_da
.handle_aa_scalar
.handle_aa_string

Similarly for variables and arrays of any
class type that is not based on vmm_data
- for example, references to other parts
of the testbench

Copyright © 2009 by Doulos. All rights reserved.

SyuUsWadURYUT AIAIDNPOId ININA H

VMM Productivity Enhancements

Extending the macros for user-defined behavior

In addition to the field macros listed in the table, you can specify
vmm_data_member_user_defined to get fully customized control over
the handling of a field. To do this requires thorough understanding of the
mechanisms used by these macros; if you wish to use it, we suggest you read
the section Shorthand Macros in the VMM User Guide that you can find in the
doc/ subdirectory of the VMM distribution.

Adding the vmm_data_byte_size macro

To complete the automation, you should add an invocation of
vmm_data_byte_size immediately after the vmm_data_member_end
invocation. This provides default implementations of the required byte_size
and max_byte_size methods. The two arguments to this macro are
SystemVerilog expressions, evaluated in the context of the appropriate
methods. The first one computes the maximum possible size of the packed
data, and is usually a constant; the second expression computes the actual size
of the current object, and could be an arbitrary arithmetic expression. In our
simple example the structure's size is fixed and so the size and maximum size
are identical.

Applying macros to members of class type

If your data class has any data members that are themselves of class type, you
must take care to decide how those embedded objects should be handled. If
the data contents of the embedded object form part of the real data of your
transaction, then any operation on your object should also descend into the
contents of the embedded object. On the other hand, a class-type data
member may be merely a reference to some other object (for example, a
transaction keeping a reference to the transactor that created it). In such a
case the contents of that other object do not form part of your object's data,
and it should be skipped for copy, comparison and other methods.

Members that reference an object whose class is derived from vmm_data

Data members whose contents form part of your object's data will certainly be
of a class type that is derived from vmm_data. They should be handled by the

8 Copyright © 2009 by Doulos. All rights reserved.

A\

DOULOS

vmm_data_member_vmm_data... macros, all of which take three
arguments rather than the normal two. The third argument is another bit-mask
that specifies how the copy and compare methods should operate on this
field.

There is a summary of the available bit-mask constants in the VMM User Guide
under the heading vmm_data: :do_how_e (the name of the enumeration
type that specifies the various constants).

Members that reference an object of some other class

Member variables that are references to other objects, not derived from
vmm_data, should be included using the vmm_data_member_handle. ..
macros. Of course, VMM knows nothing about such objects and cannot do
anything with their internal structure. Consequently, the various automatically
created methods are fairly simple and, in particular, copy and compare are
invariably shallow - it is only the reference that is copied or compared.

Automation of other VMM classes

In much the same way as for vmm_data, automation macros exist for other
key VMM classes. Most users will find that it is the vmm_data macros that
yield the greatest immediate benefit, so we do not describe the others in detail
here; instead we refer you to the VMM User Guide and, indeed, to the source
code itself.

Automation macros exist for vmm_xactor, vmm_env, and vmm_subenv as
well as for vmm_data.

Copyright © 2009 by Doulos. All rights reserved. 9

SyuUsWadURYUT AIAIDNPOId ININA H

