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Abstract - Formal verification is known to work well in areas like control logic, interface protocols, and so on, but 
it is often dismissed for use on data paths since capacity becomes a significant issue. In particular, packet based 
protocols have potentially very large state spaces, which can pose a problem for formal. However, in this paper, 
a step by step process is presented, showing how to decompose a frame of data into simple formal constraints, 
modeling code, and assertions, which allows formal to fully explore the entire packet state space. 

 

I.   INTRODUCTION 
 

All verification tools and flows have their limitations. Formal verification is known to be limited by its capacity due 
to state space caused by a large cycle depths and a large cones of influence. Thus, it is commonly believed that using 
formal on data paths typically does not work or at least requires abstraction. In general, this is true. Therefore, packet 
based protocols spanning multiple cycles and carrying large payloads would be virtually impossible, at least in theory. 
For example, an Ethernet TCP/IP packet can transfer over 9000+ bytes of data in a jumbo frame. It is easy to 
understand why most would consider this too large of a data path for formal verification to handle. 
 
However, in the words of Alexander the Great, “There is nothing impossible to him who will try.” Indeed, even with 
Ethernet jumbo frames, it is possible for formal verification to explore the entire Ethernet state space. The trick is 
understanding that while 9000+ bytes may be sent, the valid state space is actually quite small. 
 
Consider the packet structure of an Ethernet jumbo frame illustrated in Figure [1]. Most of the jumbo frame is 
comprised of the data payload, which can have any value. For this part of the frame, we can let formal pick any 
random data it wants, removing the data portion from the state space needed to explore. What we are really 
interested in verifying with packet-based protocols is: (1) does the packet get parsed correctly? and (2) is the 
embedded control information in the packet correct? In other words, we are really verifying the control logic that is 
driven by the information from the packet. 
 
With the payload removed from the formal state space, there are only a handful of fields remaining. While these 
fields may be quite large, most fields only have a few valid values, which we can easily constrain to reduce the state 
space further. Likewise, we can break up the packet into smaller structures so that each field of the packet is handled 
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Figure 1: Potential IPv4 state space up to jumbo frames of 272288 bit combinations [1]. 
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separately instead of as one large state space. In other words, packet-based frames and protocols are not beyond 
the scope of formal verification; rather, formal can prove that your packet parser handles every packet correctly and 
finds all invalid packet corner cases1, which is something hard to claim with other verification flows. 
 
Using a small packet based protocol such as the CAN bus, this paper will outline a six step procedure for modeling 
packet data for formal verification, which can be used for any packet-based protocol. 

 

II. MODELING PACKET BASED INPUT 
 

A. Model the control logic 
The first step to sending a packet of data is defining the hand-shaking protocol between the producer and the 
consumer. This is typically handled using a start-of-packet (SOP) and end-of-packet (EOP) handshake protocol (see 
Figure 2). This can be modeled using helper code or formal constraints.  

 

 

Figure 2: Packet handshake protocol. 
 

The CAN bus protocol refers to a packet as a frame2 and does not explicitly use a handshaking protocol. However, 
these handshaking signals can be used to constrain formal and are shown here for other protocols that use them. 
The control logic could be modeled with some procedural code as follows: 

 
1 module canbus (input clk,  

2                input rst,  

3                input rx,  

4                output tx,  

5                input tx_rx);       // Transmitter or receiver 

6  

7    bit pkt_sof;      // Start of frame 

8    bit pkt_eof;      // End of frame 

9    bit pkt_vld;      // Valid packet 

10  
11  
12    // ----------------------------------------------------------------- 
13    // (1) Model the control logic 
14    // ----------------------------------------------------------------- 
15    bit       in_progress;                // Frame transaction in progress 
16    bit [7:0] total_bits;                 // Total frame bits 
17    bit [7:0] tx_bits;                    // Number of frame bits transmitted 
18  
19    // Create an active flag 
20    wire active = pkt_sof | in_progress; 
21  
22    always @(posedge clk or posedge rst) begin 
23            if ( rst )     in_progress <= 1'b0; 
24       else if ( pkt_eof ) in_progress <= 1'b0; 
25       else if ( pkt_sof ) in_progress <= 1'b1; 
26    end 
27  
 

 
1 Provided the valid values of the packets are fully specified. 
2 The terms packet and frame are used interchangeably in this paper. 
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Using this modeling code, formal constrains are easily specified to create the handshaking signals: 
 

28    default clocking cb @(posedge clk); endclocking 
29  
30    // Control signal constraints 
31    property prop_transfer; 
32       pkt_sof <-> pkt_vld[*1:$] ##0 pkt_eof; 
33    endproperty 
34  
35    asm_pkt_vld: assume property ( active <-> pkt_vld ); 
36    asm_pkt_sof: assume property ( $rose(pkt_vld) |-> $rose(pkt_sof) ); 
37    asm_pkt_eof: assume property ( pkt_vld && (tx_bits >= total_bits) <-> pkt_eof ); 
38    asm_pkt_notsof: assume property ( in_progress |-> !pkt_sof ); 

 

The prop_transfer property specifies the waveform shown in Figure 2. The other assumptions constrain formal 
from toggling the valid, start-of-frame, and end-of-frame signals while the transfer is in progress. The total_bits 
and tx_bits signals will be assigned in a later step. 

 
B. Define the packet structure 
The next step is allocating a vector or array to hold the generated packet. While it may be tempting to define one 
large vector, the larger the vector, the larger the state space. By breaking the packet into smaller chunks, it makes 
it easier for formal to synthesize and reduces the number of constraints needed for each field in the packet. For 
this paper, we implement the CAN bus protocol as shown in Figure 3. 

 

 
Figure 3: CAN bus protocol [2]. 

 

Examining the CAN frame, the largest field is the data field, which can be up to 8 bytes, and the CRC is the second 
largest field at 16 bits. Therefore, we could arbitrarily break the packet into either 8 bits or 16 bits chunks. The size 
of the chunk will determine the number of properties and potentially the speed of the formal analysis. For this 
example, we use 8 bits as our chunk size, and we use a standard CAN frame and not the extended frame format. 
(However, we do include bit stuffing, but bit stuffing is addressed when we transmit the data in another step). 
 
The next step is to define an 8 bit structure for each part of the packet. For parts that are greater than 8 bits, we 
will define multiple structures to represent the field. Of course, some parts of the structure may have extra bits if a 
field is not a multiple of 8, but anything extra will simply become unused bits3. Here is one possible way to define 
structs for the CAN packet (note, since the data is transmitted from MSB to LSB, any unused bits will be included at 
the bottom of the structure): 

 

 
 

 
3 The smaller the packet is sliced, the less bits go unused, but at the cost of more structures and coding. The 

state space is unaffected by the extra bits because they are not used and pose no performance issue for the formal 
tool. 
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39    // -------------------------------- 
40    // (2) Define the packet structure 
41    // -------------------------------- 
42    // ------------------  
43    // Start of frame 
44    // ------------------  
45    typedef struct packed { 
46       bit       sof; 
47       bit [6:0] unused; 
48    } start_of_frame_t; 
49   
50  
51    // ------------------  
52    // Arbitration 
53    // ------------------  
54    typedef struct packed { 
55       bit [10:3] id; 
56    } arbitration_high_t; 
57  
58    typedef struct packed { 
59       bit [2:0] id; 
60       bit       rtr; 
61       bit [3:0] unused; 
62    } arbitration_low_t; 
63     
64    // ------------------  
65    // Control 
66    // ------------------  
67    typedef struct packed { 
68       bit       ide; 
69       bit       r0; 
70       bit [3:0] dlc; 
71       bit [1:0] unused; 
72    } control_t; 
73     
74    // ------------------  
75    // Data 
76    // ------------------  
77    typedef struct packed { 
78       bit [7:0] value; 
79    } data_t; 
80  

81    // ------------------  
82    // CRC 
83    // ------------------  
84    typedef struct packed { 
85       bit [14: 7] crc; 
86    } crc_high_t; 
87    
88    typedef struct packed { 
89       bit [6:0] crc; 
90       bit       unused; 
91    } crc_low_t;   
92   
93    // Break out the CRC delimiter  
94    // so no bit stuffing occurs  
95    // during the delimiter 
96    typedef struct packed { 
97       bit       crc_delimiter; 
98       bit [6:0] unused; 
99    } crc_delimiter_t; 
100  
101  
102    // ------------------  
103    // Acknowledge 
104    // ------------------  
105    typedef struct packed { 
106       bit       ack; 
107       bit       ack_delimiter; 
108       bit [5:0] unused; 
109    } ack_t; 
110  
111    // ------------------  
112    // End of frame 
113    // ------------------  
114    typedef struct packed { 
115       bit [6:0] eof; 
116       bit       unused; 
117    } end_of_frame_t; 
118  
119    typedef struct packed { 
120       bit [2:0] ifs; 
121       bit [4:0] unused; 
122    } inter_frame_spacing_t; 

 

With the packet structures defined, we can define a packed union to represent any part of the packet or frame. 
We include a member called qbits to explicitly access the packed union as a flatten queue of bits: 

 
123 // Combined packet type 

124 typedef union packed { 

125    start_of_frame_t       sof; 

126    arbitration_high_t     arb_h; 

127    arbitration_low_t      arb_l; 

128    control_t              ctrl; 

129    data_t                 data; 

130    crc_high_t             crc_h; 

131    crc_low_t              crc_l; 

132    crc_delimiter_t        crc_delimiter; 

133    ack_t                  ack; 

134    end_of_frame_t         eof; 

135    inter_frame_spacing_t  ifs; 

136    bit [7:0]              qbits; 

137 } pkt_item_t; 
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With our packet items defined, we now create an array that contains our CAN bus frame. Since we have 11 
structures and the data can be up to 8 bytes in a frame, we set the size of the array to be at least 18 plus an extra 
array element for terminating the frame: 

 

 
138    // Packet items 
139    localparam NUM_ITEMS = 1 +  // SOF 
140                           1 +  // ARB_H 
141                           1 +  // ARB_L 
142                           1 +  // CTRL 
143                           8 +  // DATA 
144                           1 +  // CRC_H 
145                           1 +  // CRC_L 
146                           1 +  // CRC_DELIMITER 
147                           1 +  // ACK 
148                           1 +  // EOF 
149                           1 +  // IFS 
150                           1;   // NONE 
151  
152    pkt_item_t packet [NUM_ITEMS+1]; 

 

When we define the packet array, we allocate one more location so our formal properties will synthesize and work 
correctly, which is explained in the last step. 
 
Associated with each chunk in the frame is another structure to keep track of its field kind or type, length, and a 
running tally of the overall length (as the number of bits or bytes depending on the protocol) of the frame. While 
this information can be embedded in each packet structure above, by separating out this information, we keep the 
size of the packet structure smaller for the formal tool and ensure that it does not affect the packet’s state space. 
For example, the following code defines this additional structure: 

 
153    // ----------------- 
154    // Packet Structure 
155    // ----------------- 
156    typedef enum bit [3:0] { SOF, ARB_H, ARB_L, CTRL, DATA, CRC_H, CRC_L,  
157                             CRC_DELIMITER, ACK, EOF, IFS, NONE } pkt_item_kind_t; 
158     
159    typedef struct packed { 
160        pkt_item_kind_t  kind; 
161        bit [7:0]        length; 
162        bit [7:0]        total_length; 
163    } packet_info_t; 
164  
165    packet_info_t packet_info [NUM_ITEMS+1]; 

 

Once again, the purpose of this step is to break the packet-based protocol into smaller, manageable chunks, which 
reduces the state space for formal and simplifies its formal synthesis. Conceptually, the arrays are illustrated in 
Figure 4, showing how the structures map back to the packet diagram. The length field represents the number of 
bits used in that element, and the total_length is the length of the entire packet/frame from that array element 
onwards.  
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Figure 4: Example mapping of a CAN frame to the packet and the packet_info arrays. 
 

C. Define the packet constraints 
 

With the packet structures defined, we constrain our packet arrays to represent a valid, basic CAN frame. First, 
some helper constraints are added to keep track of each frame item, and tally up the total packet size: 

 
166    // ----------------------------------------------------------------- 
167    // (3) Define packet constraints 
168    // ----------------------------------------------------------------- 
169    sequence seq_kind(n, k); 
170       packet_info[n].kind == k; 
171    endsequence 
172  
173    sequence seq_total_length(n); 
174       packet_info[n].total_length == packet_info[n+1].total_length +  
175                                      packet_info[n].length; 
176    endsequence 
177  
178    sequence seq_length(n, l); 
179       ( packet_info[n].length == l ) and seq_total_length(n); 
180    endsequence 
181  
182    sequence seq_terminate_length(n); 
183       ( packet_info[n].length == 0 ) &&  
184       ( packet_info[n].total_length == 0 ); 
185    endsequence 
 

The n passed into the named sequences represents the element in the packet arrays shown above. With the 
seq_total_length sequence, the total length is calculated using the current element’s length and the next 
element’s length (n+1). The seq_length sequence sets the length and then calls the seq_total_length. This 
technique of reaching into the previous or next element in the frame is one way to pass information about the 
entire packet to the header fields (like the total packet/frame length) or for error checking functions (like 
checksum or CRC). 

 
Now a property constraint needs written for each element in the packet to specify its legal values. Each property is 
passed an index into the packet array (n), and the packet element’s kind, length, and legal values for its structure’s 
members are described within the named property: 
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186    //  
187    // Start of frame 
188    //  
189    property prop_sof(n); 
190       seq_kind(n,SOF) and 
191       seq_length(n,1) and 
192       (packet[n].sof.sof == '0) and 
193       (packet[n].sof.unused == '0); 
194    endproperty 
195   
196    //  
197    // Arbitration 
198    // 
199    enum bit { DATA_FRAME   = 0,  
200               REMOTE_FRAME = 1  
201             } frame_type; 
202    bit [10:0] id;                           
203  
204    property prop_arb_h(n); 
205       seq_kind(n,ARB_H) and 
206       seq_length(n,8) and 
207      (packet[n].arb_h.id == id[10:3]); 
208    endproperty 
209  
210    property prop_arb_l(n); 
211       seq_kind(n,ARB_L) and 
212       seq_length(n,4) and 
213       (packet[n].arb_l.id == id[2:0]) 
214       and 
215    (packet[n].arb_l.rtr == frame_type)  
216       and 
217       (packet[n].arb_h.unused == '0); 
218    endproperty 
219  
220    // 
221    // Control 
222    // 
223    bit [3:0] payload_size; 
224    property prop_control(n); 
225       seq_kind(n,CTRL) and 
226       seq_length(n,6) and 
227       (packet[n].ctrl.ide == 0) and 
228       (packet[n].ctrl.r0  == 0) and 
229   (packet[n].ctrl.dlc == payload_size)  
230       and 
231       (packet[n].ctrl.unused == '0); 
232    endproperty 
233     
234    // 
235    // Data payload 
236    // 
237    bit [7:0] random_data;                
238  
239    property prop_data(n); 
240       seq_kind(n,DATA) and 
241       seq_length(n,8) and 
242 (packet[n].data.value == random_data); 
243    endproperty 
244  

245    // 
246    // CRC 
247    // 
248    bit [15:0] crc; 
249  
250    property prop_crc_h(n); 
251       seq_kind(n,CRC_H) and 
252       seq_length(n,8) and 
253    (packet[n].crc_h.crc == crc[14:7]); 
254    endproperty 
255  
256    property prop_crc_l(n); 
257       seq_kind(n,CRC_L) and 
258       seq_length(n,7) and 
259     (packet[n].crc_l.crc == crc[6:0]); 
260    endproperty 
261  
262    property prop_crc_delimiter(n); 
263       seq_kind(n,CRC_DELIMITER) and 
264       seq_length(n,1) and 
265  packet[n].crc_delimiter.crc_delimiter 

== 1); 

266    endproperty 
267   
268    // 
269    // ACK 
270    // 
271    property prop_ack(n); 
272       seq_kind(n,ACK) and 
273       seq_length(n,2) and 
274       (packet[n].ack.ack == tx_rx) and           
275   (packet[n].ack.ack_delimiter == '1); 
276    endproperty 
277  
278    // 
279    // End of frame 
280    // 
281    property prop_eof(n); 
282       seq_kind(n,EOF) and 
283       seq_length(n,7) and 
284       (packet[n].eof.eof == '1);                 
285    endproperty 
286  
287    // 
288    // Inter-frame spacing 
289    // 
290    property prop_ifs(n); 
291       seq_kind(n,IFS) and 
292       seq_length(n,3) and 
293       (packet[n].ifs.ifs == '1); 
294    endproperty 
295  
296    // 
297    // Terminal for packet 
298    // 
299    property prop_none(n); 
300       seq_kind(n,NONE) and 
301       seq_terminate_length(n); 
302    endproperty 
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To better understand these properties, consider the start-of-frame: 
 

189 property prop_sof(n); 

190    seq_kind(n,SOF) and 

191    seq_length(n,1) and 

192    (packet[n].sof.sof == '0) and 

193    (packet[n].sof.unused == '0); 

194 endproperty 

 

On line 190, seq_kind is called with the array index and the kind as defined by the pkt_item_kind_t 
enumeration (line 157). This sets packet_info[n].kind element to the start-of-frame or SOF, and seq_length 
sets packet_info[n].length to 1, adds 1 to the total frame bit count, and assigns it to 
packet_info[n].total_length. These two sequences are included in all the properties, and then any 
individual field constraints required by the bus protocol are included. For example, the sof field is set to 0 per the 
CAN bus protocol. For purposes of the CRC calculation, the unused bits are also constrained to 0 since zeros are 
passed over in the CRC calculation. 
 
Notice that the packet’s payload, which can be up to 8 bytes in a basic CAN bus frame, is specified using only one 
named property, prop_data. This property will be applied multiple times for each byte in the payload. Since we 
wish to transfer just random data, we are using an unconstrained formal control point, random_data, and 
assigning it for our data payload. For calculating the CRC, we define a local variable called crc, which will be 
assigned the calculated CRC value for the CAN frame. The CRC calculation is performed using a function, which is 
shown in the last step. By themselves, these named properties do nothing, but in the next step, we apply these 
properties to each element of the packet array so formal knows how to generate the valid CAN frame.   
 
D. Apply the packet constraints 
 
The next step is to apply the property constraints defined above. This is where the actual packet or frame is 
defined. When we verify our design, we want to check that both the valid and invalid packets are handled 
correctly; however, it is easier to define the valid packets since they are generally fully specified. For now, our 
focus will be on defining valid packets, but later we will show how to generate illegal packets. 
 
The key to creating a packet or frame is defining a top level property with conditional statements4. Here is what 
our CAN frame property looks like: 

 
303    // ----------------------------------------------------------------- 
304    // (4) Apply packet constraints 
305    // ----------------------------------------------------------------- 
306    property prop_pkt(n); 
307            if ( packet_info[n].kind == SOF           ) prop_arb_h(n+1) 

308       else if ( packet_info[n].kind == ARB_H         ) prop_arb_l(n+1) 
309       else if ( packet_info[n].kind == ARB_L         ) prop_control(n+1) 
310       else if ( ( payload_size == 0    ) && ( packet_info[n].kind == CTRL) ) prop_crc_h(n+1) 
311       else if ( ( payload_size  > 0    ) && ( packet_info[n].kind == CTRL) ) prop_data(n+1) 
312       else if ( (( payload_size+3) >  n) && ( packet_info[n].kind == DATA )) prop_data(n+1) 
313       else if ( (( payload_size+3) <= n) && ( packet_info[n].kind == DATA )) prop_crc_h(n+1) 
314       else if ( packet_info[n].kind == CRC_H         ) prop_crc_l(n+1) 
315       else if ( packet_info[n].kind == CRC_L         ) prop_crc_delimiter(n+1) 
316       else if ( packet_info[n].kind == CRC_DELIMITER ) prop_ack(n+1) 
317       else if ( packet_info[n].kind == ACK           ) prop_eof(n+1) 
318       else if ( packet_info[n].kind == EOF           ) prop_ifs(n+1) 
319       else                                             prop_none(n+1); 
320    endproperty 

 

 
4 SVA allows a case statement within a property, but not all formal tools currently support it. 
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The first element in the packet_info array needs set and then all the other constraints fall into place. The code 
for that is shown in a later step, but Figure 5 illustrates how the prop_pkt property is applied to the 
packet_info array, and how the n+1 index actually sets the element type for the next element in the array. The 
prop_pkt property is applied to all packet elements, but this is shown in the final step. 

 

 
Figure 5: How the prop_pkt property sets each element in the packet_info array. 

 

E. Model the packet driving logic 
 

Sending the packet is easily accomplished with some synthesizable SystemVerilog helper code. The helper code 
also handles the bit stuffing used by the CAN bus protocol. Bit stuffing is used to maintain synchronization by 
inserting a bit of the opposite polarity every time 5 consecutive bits of the same polarity are transmitted. It is 
slightly more complicated because bit stuffing is not used while transmitting the fixed length part of the frame 
from the CRC delimiter to the inter-frame spacing [2]. Plus, the bit stuffing is not used in the calculation of the CRC. 
 
The CAN bus sends one bit of data at a time. Stepping through the CAN frame is accomplished using two 
pointers—one that specifies the unpacked dimensions of the packet array and one that steps through the packed 
dimensions of each array element. The unpacked dimension pointer is p in the following code, and n represents 
the packed dimensions pointer. Instead of driving directly onto the tx output port, an intermediate signal tx_out 
is used, and then assigned to the tx output using a formal constraint in the next step. The reason for this is to 
simplify the helper code modeling and give the flexibility of controlling the output easily with additional formal 
constraints. A transmitted bit counter, tx_bits, is maintained for determining the end-of-frame as shown above 
on line 17 of the example code. For completeness, the bit stuffing code is included, but it is slightly greyed out to 
focus on the packet driving logic. 

 
321    // ----------------------------------------------------------------- 
322    // (5) Model the packet driving logic 
323    // ----------------------------------------------------------------- 
324    bit       tx_out;             // Data to drive to the output 
325    bit [3:0] p; 
326    bit [2:0] n; 
327    bit       prev_tx;            // Extra bit stuffing logic in grey 

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

SOF
ARB_H

ARB_L

CTRL

DATA

packet_info

CRC_H

CRC_L

CRC_DELIMITER
1 

13
ACK

2 
12

EOF

IFS

n

if ( packet_info[0].kind == SOF ) prop_arb_h(0+1)

assume property (pkt_sof |-> prop_sof(0));

else if ( packet_info[1].kind == ARB_H ) prop_arb_l(1+1)

else if ( packet_info[2].kind == ARB_L ) prop_control(2+1)

else if ( ( payload_size > 0 ) && ( packet_info[3].kind == CTRL) ) prop_data(3+1)

else if ( (( payload_size+3) <= 4) && ( packet_info[4].kind == DATA )) prop_crc_h(4+1)

else if ( packet_info[5].kind == CRC_H ) prop_crc_l(5+1)

else if ( packet_info[6].kind == CRC_L ) prop_crc_delimiter(6+1)

else if ( packet_info[7].kind == CRC_DELIMITER ) prop_ack(7+1)
else if ( packet_info[8].kind == ACK ) prop_eof(8+1)

else if ( packet_info[9].kind == EOF) prop_ifs(9+1)

else                                  prop_none(10+1)

NONE[11]

property prop_pkt(n);

endproperty
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328    bit [2:0] same; 
329     
330    always @(posedge clk or posedge rst) 
331    begin 
332       if ( rst ) begin 
333          tx_out  <= '0; 
334          p       <= '0; 
335          n       <= $bits(pkt_item_t) - 1'b1; 
336          tx_bits <= '0; 
337        prev_tx <= '0; 

338        same    <= '0; 

339       end 
340       else begin 
341     

342       // ------------------- 
343       // Transfer the data 
344       // ------------------- 
345       if ( pkt_vld ) begin     

346  
347          // 
348          // Insert bit stuffing 
349          // 
350          if (( packet_info[p].kind inside { [SOF:CRC_L] } ) && ( same == 5 )) begin 
351  
352             tx_out  <=  ~prev_tx; 
353             same    <= '0; 
354             prev_tx <=  ~prev_tx; 
355  
356          end 
357          else begin 
358  
359             // Drive the packet data 
360             tx_out <= packet[p].qbits[n]; 
361  
362             // Keep track of how many bits sent 
363             tx_bits <= tx_bits + 1'b1; 
364              
365             // Update pointers 
366             if ( ( $bits(pkt_item_t) - n ) == packet_info[p].length ) begin 
367                if ( packet_info[p].kind == NONE )  
368                  p <= '0;                    // Wrap back to beginning 

369                else 
370                  p <= p + 1'b1;              // Next packet item 

371                    

372                n <= $bits(pkt_item_t) - 1'b1; // Start with the top bit 
373             end 
374             else begin 
375                 
376                // Next bit in the packet item 
377                n <= n - 1'b1; 
378             end 
379              
380             // Bit stuffing tracking 
381             if ( packet[p].qbits[n] == prev_tx ) begin 
382                same    <= same + 1'b1; 
383             end 
384             else begin 
385                same    <= '0; 
386                prev_tx <= packet[p].qbits[n]; 
387             end 
388           end 
389         end 
390         else begin 
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391  
392            // Clear when not valid 
393            p       <= '0; 
394            n       <= $bits(pkt_item_t) - 1'b1; 
395            prev_tx <= '0; 
396            same    <= '0; 
397        end 

398       end 
399    end 

 

The packet driving logic is highlighted on line 360. The pointers p and n are incremented through the packet, and 
unused bits are skipped over by looking at the length of each array element as defined in the packet_info array 
(line 366). Formal synthesizes this code into the logic shown in Figure 6.  

 

 
Figure 6: Diagram of the modeling code used to drive the packet data. 

 

For the bit stuffing logic in grey, the data transmitted is saved in prev_tx and a counter called same keeps track of 
the number of consecutive occurrences of the same polarity. When the counter reaches 5, data of the opposite 
polarity is driven onto the output except during the fixed length parts at the end of the frame. 
 
F. Generate the packet 
With everything in place, the last and final step is to add the formal constraints to create the packet of data. First, 
the packet needs to be initialized: 

 
400    // ----------------------------------------------------------------- 
401    // (6) Generate the packet 
402    // ----------------------------------------------------------------- 
403     
404    // Initialize the packet 
405    asm_pkt_init_start   : assume property ( pkt_sof |-> prop_sof(0) ); 
406    asm_pkt_init_last    : assume property ( prop_none(NUM_ITEMS) ); 

 

Constraint asm_pkt_init_start assigns the first element in the packet to be a start-of-frame. The last element 
in the packet array is assigned to be of type NONE, meaning that it is an unused element. The reason for including 
the extra element at the end of the packet array (NUM_ITEMS+1) is because the packet constraints use n+1. Since 
the properties need to be synthesizable, the extra element is added so that no index out-of-bounds error is 
generated when referencing packet[n+1] or packet_info[n+1]. In the above code, prop_none(NUM_ITEMS) 
initializes that last element to NONE since it is not used, but is there to prevent the index out-of-bounds error. 
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Next, each element in the packet is constrained using the prop_pkt property discussed previously: 
 

407    // Create the packet/frame 
408    for (genvar i = 0; i < NUM_ITEMS-1; i++ ) 
409    begin : pkt_init 
410       asm_init_pkt : assume property ( pkt_sof |-> prop_pkt(i) ); 
411    end 
412  
413    asm_set_total_frame_length :  
414                     assume property ( total_bits == packet_info[0].total_length ); 
415   
416    asm_payload_size       : assume property ( payload_size inside { [0:8] } ); 
417    asm_payload_size_stable: assume property ( pkt_vld |-> $stable(payload_size) ); 

 

The generate block handles the packet initialization by assigning the prop_pkt property constraint to each 
element. Recall, the total_length bit count represents the total number of bits in the frame from that position 
onwards. Therefore, the total length can be found in element 0 of the packet_info array as shown on line 417. 
The total_bits variable is set with this assumption and then used to control the end-of-frame signal when the 
number of transmitted bits (tx_bits) reaches total_bits. In order to constrain the payload size (i.e., number of 
data elements), the payload is constrained on line 416. 
 
While the asm_init_pkt constraint initializes most of the frame, the CRC still needs to be calculated. A 
synthesizable function is defined which uses only parts of the frame needed for the CRC calculation. While the 
specific implementation is not important, it is included here for reference as an example for calculating CRC or 
checksum: 

 
418    // ----------------------------------------------------------------- 
419    // CRC functions 
420    // The following is taken from http://blog.qartis.com/can-bus 
421    // ----------------------------------------------------------------- 
422    function bit [15:0] can_crc_next(bit [15:0] crc, bit [7:0] data); 
423       crc ^= 16'(data) << 7; 
424  
425       for ( int i = 0; i < 8; i++ ) begin 
426           crc <<= 1; 
427           if ( crc & 16'h8000 ) begin 
428              crc ^= 16'hc599; 
429           end 
430       end 
431       return (crc & 16'h7fff); 
432    endfunction : can_crc_next 
433  
434    function bit [15:0] calc_crc(); 
435        calc_crc = '0; 
436  
437        calc_crc = can_crc_next( calc_crc, { '0, packet[1].qbits[7:6] }); 
438        calc_crc = can_crc_next( calc_crc, { packet[1].qbits[5:4],  
439                                             packet[2].qbits[7:2] }); 
440        calc_crc = can_crc_next( calc_crc, { packet[2].qbits[1:0],  
441                                             packet[3].qbits[5:0] }); 
442  
443        for ( int i = 4; i < 12; i++ ) begin 
444            if (( payload_size + 4 ) > i ) begin 
445               calc_crc = can_crc_next( calc_crc, packet[i].qbits ); 
446            end 
447        end 
448    endfunction : calc_crc 
449  
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Recall on line 248, a variable named crc was defined and used within the named properties prop_crc_h and 
prop_crc_l. This variable can now be set using the calc_crc() function: 

 
450    // Generate the CRC 
451    asm_calc_crc: assume property ( pkt_vld |-> crc == calc_crc() && $stable(crc) ); 
452  

 

With the CRC constrained, the frame is now complete. A formal constraint is used to assign the tx_out variable to 
the tx output, and the packet needs to be held stable during the packet transfer or formal will continue to change 
the packet structure each clock cycle: 

 
453    // Drive the frame 
454    asm_drive_data     : assume property (  pkt_vld |-> tx == tx_out ); 
455    asm_undriven       : assume property ( !pkt_vld |-> tx == 1'b1 ); 
456    asm_pkt_stable     : assume property (  pkt_vld |-> $stable(packet) ); 
457    asm_pkt_info_stable: assume property (  pkt_vld |-> $stable(packet_info) ); 
458  

 

The asm_drive_data constraint performs the actual driving of the data to the output. The CAN bus protocol 
specifies a value of 1 when not driving so asm_undriven provides that functionality.  
 
The last and final step is to write the actual formal assertion or cover properties to perform the formal verification. 
If driving into a packet parser, the design would typically include a status signal to indicate whether a packet has 
been successfully received and parsed. In that case, a typical assertion would be to assert that the status signal 
never indicates an error since we have defined only valid, legal packets. For this CAN bus example, we define a 
cover property to generate a waveform of the frame: 

 
459    // Generate waveform of frame 
460    cov_gen_packet:  cover property ( prop_transfer );  

 

The cover property waveform is shown in Figure 7. The packet_info shows how the formal constraints have built 
the packet, specifically the type or kind of each element, which is used for constraining the packet elements. The 
union member qbits is used to drive the value onto the tx output, which is highlighted in blue in the waveform. 
 
One modification to consider is the ability of specifying bad packets or frames for testing the design’s handling of 
bad input. We start by defining a flag that specifies if the packet is valid (good) or invalid (bad): 

 
461   // Used by formal tool to select good or bad packets 
462   enum bit  { FALSE = 0, TRUE = 1 } pkt_good; 

 

Next, we modify the properties we already defined. We create a new property that will set the kind, length, and 
call our previous properties. For example: 

 



 

Copyright © 2023 Doulos (All Rights Reserved)  Page 14 of 16 

 

 
Figure 7: Example CAN frame generated by formal using a cover property. 

 

 
189   property prop_sof(n); 
190     seq_kind(n,SOF) and 
191     seq_length(n,1) and 
192     (packet[n].sof.sof == '0) and 
193     (packet[n].sof.unused == '0); 
194   endproperty 

 

Is changed to: 
 

189   property prop_sof(n); 
190     (packet[n].sof.sof == '0) and 
191     (packet[n].sof.unused == '0); 
192   endproperty 
193   
194   // Add new property 
195   property prop_pkt_sof(n); 
195      seq_kind(n,SOF) and 
196      seq_length(n,1) and 
197      if ( pkt_good )     prop_sof(n) 
198      else            not(prop_sof(n)); 
199   endproperty 
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The pkt_good flag tells formal to use the valid packet constraints or set it to the opposite. Once we modify each 
constraint, we modify the pkt_prop constraint to call the new properties instead (e.g., prop_pkt_sof shown 
above). Then to generate a good or bad packet, we just include the prop_good flag in the assertions or cover 
property: 

 
463    cov_gen_good_packet : cover property (     pkt_good  and prop_transfer );  
464    cov_gen_bad__packet : cover property ( not(pkt_good) and prop_transfer );  

 

The not(pkt_good) causes formal to set pkt_good == FALSE, which in turn affects the conditional statements 
in the packet properties. 
 

III. RESULTS 
 

Performance between formal tools varies using this approach. Compilation is typically very quick (usually seconds) 
provided the packet structures are sliced small enough to be efficient for formal. The author has personally used 
this approach for verifying Ethernet jumbo frames (9000 bytes) on a real-world Ethernet parser. Generating a 
packet waveform as in Figure 7 takes a bit more time. In this example of a CAN bus frame, results vary between the 
major EDA vendors between 20 seconds to 1 minute. However, for the larger Ethernet example, generation times 
were typically between 3 to 6 minutes. 
 
Developing the constraints and modeling code discussed in this paper is typically much less time than developing a 
UVM environment. For example, this CAN bus example was developed over a couple days, including learning the 
bus protocol. With this approach, no test cases were needed nor did any corner case need specified. All that is 
needed is the requirements for the design and the appropriate assertions and cover properties specifying whether 
to use a good or bad packet. Formal will do the rest and thoroughly test your design without the weeks or months 
of developing a simulation testbench. The added advantage is that the formal constraints used to specify the 
packet or frame can also be used with simulation and complement other verification environments. Assumptions 
specified for formal become assertions in simulations so they can be used as extra checks in simulation to verify 
that the stimulus was generated correctly. 
 
Indeed, the formal constraints are perhaps the easiest part to this approach. Developing the appropriate modeling 
code is typically much more time-consuming. In this example, adding in the bit stuffing and the CRC calculation 
proved to be the more difficult and time-consuming component than developing the constraints. While not all data 
path problems are solvable using formal, this approach demonstrates that with a little ingenuity and 
understanding how a formal tool synthesizes and solves problems, even complicated packet-based protocols are 
within the possibility of formal verification. 
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