
 doulos.com/knowhow

Copyright © 2023 Doulos (All Rights Reserved) Page 1 of 16

Doing the Impossible:
Using Formal Verification on Packet Based Data Paths

Doug Smith Doulos - Austin, Texas

Abstract - Formal verification is known to work well in areas like control logic, interface protocols, and so on, but
it is often dismissed for use on data paths since capacity becomes a significant issue. In particular, packet based
protocols have potentially very large state spaces, which can pose a problem for formal. However, in this paper,
a step by step process is presented, showing how to decompose a frame of data into simple formal constraints,
modeling code, and assertions, which allows formal to fully explore the entire packet state space.

I. INTRODUCTION

All verification tools and flows have their limitations. Formal verification is known to be limited by its capacity due
to state space caused by a large cycle depths and a large cones of influence. Thus, it is commonly believed that using
formal on data paths typically does not work or at least requires abstraction. In general, this is true. Therefore, packet
based protocols spanning multiple cycles and carrying large payloads would be virtually impossible, at least in theory.
For example, an Ethernet TCP/IP packet can transfer over 9000+ bytes of data in a jumbo frame. It is easy to
understand why most would consider this too large of a data path for formal verification to handle.

However, in the words of Alexander the Great, “There is nothing impossible to him who will try.” Indeed, even with
Ethernet jumbo frames, it is possible for formal verification to explore the entire Ethernet state space. The trick is
understanding that while 9000+ bytes may be sent, the valid state space is actually quite small.

Consider the packet structure of an Ethernet jumbo frame illustrated in Figure [1]. Most of the jumbo frame is
comprised of the data payload, which can have any value. For this part of the frame, we can let formal pick any
random data it wants, removing the data portion from the state space needed to explore. What we are really
interested in verifying with packet-based protocols is: (1) does the packet get parsed correctly? and (2) is the
embedded control information in the packet correct? In other words, we are really verifying the control logic that is
driven by the information from the packet.

With the payload removed from the formal state space, there are only a handful of fields remaining. While these
fields may be quite large, most fields only have a few valid values, which we can easily constrain to reduce the state
space further. Likewise, we can break up the packet into smaller structures so that each field of the packet is handled

 0 1 2 3

Oct

et Bit 0 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

2

8

2

9

3

0

3

1

0 0 Version IHL DSCP

EC

N Total Length

4 32 Identification Flags Fragment Offset

8 64 Time To Live Protocol Header Checksum

12 96 Source IP Address

16 128 Destination IP Address

20 160

Options (if IHL > 5)

24 192

28 224

32 256

36 260

Data

9036

7228

8

Figure 1: Potential IPv4 state space up to jumbo frames of 272288 bit combinations [1].

Copyright © 2023 Doulos (All Rights Reserved) Page 2 of 16

separately instead of as one large state space. In other words, packet-based frames and protocols are not beyond
the scope of formal verification; rather, formal can prove that your packet parser handles every packet correctly and
finds all invalid packet corner cases1, which is something hard to claim with other verification flows.

Using a small packet based protocol such as the CAN bus, this paper will outline a six step procedure for modeling
packet data for formal verification, which can be used for any packet-based protocol.

II. MODELING PACKET BASED INPUT

A. Model the control logic
The first step to sending a packet of data is defining the hand-shaking protocol between the producer and the
consumer. This is typically handled using a start-of-packet (SOP) and end-of-packet (EOP) handshake protocol (see
Figure 2). This can be modeled using helper code or formal constraints.

Figure 2: Packet handshake protocol.

The CAN bus protocol refers to a packet as a frame2 and does not explicitly use a handshaking protocol. However,
these handshaking signals can be used to constrain formal and are shown here for other protocols that use them.
The control logic could be modeled with some procedural code as follows:

1 module canbus (input clk,

2 input rst,

3 input rx,

4 output tx,

5 input tx_rx); // Transmitter or receiver

6

7 bit pkt_sof; // Start of frame

8 bit pkt_eof; // End of frame

9 bit pkt_vld; // Valid packet

10
11
12 // ---
13 // (1) Model the control logic
14 // ---
15 bit in_progress; // Frame transaction in progress
16 bit [7:0] total_bits; // Total frame bits
17 bit [7:0] tx_bits; // Number of frame bits transmitted
18
19 // Create an active flag
20 wire active = pkt_sof | in_progress;
21
22 always @(posedge clk or posedge rst) begin
23 if (rst) in_progress <= 1'b0;
24 else if (pkt_eof) in_progress <= 1'b0;
25 else if (pkt_sof) in_progress <= 1'b1;
26 end
27

1 Provided the valid values of the packets are fully specified.
2 The terms packet and frame are used interchangeably in this paper.

Copyright © 2023 Doulos (All Rights Reserved) Page 3 of 16

Using this modeling code, formal constrains are easily specified to create the handshaking signals:

28 default clocking cb @(posedge clk); endclocking
29
30 // Control signal constraints
31 property prop_transfer;
32 pkt_sof <-> pkt_vld[*1:$] ##0 pkt_eof;
33 endproperty
34
35 asm_pkt_vld: assume property (active <-> pkt_vld);
36 asm_pkt_sof: assume property ($rose(pkt_vld) |-> $rose(pkt_sof));
37 asm_pkt_eof: assume property (pkt_vld && (tx_bits >= total_bits) <-> pkt_eof);
38 asm_pkt_notsof: assume property (in_progress |-> !pkt_sof);

The prop_transfer property specifies the waveform shown in Figure 2. The other assumptions constrain formal
from toggling the valid, start-of-frame, and end-of-frame signals while the transfer is in progress. The total_bits
and tx_bits signals will be assigned in a later step.

B. Define the packet structure
The next step is allocating a vector or array to hold the generated packet. While it may be tempting to define one
large vector, the larger the vector, the larger the state space. By breaking the packet into smaller chunks, it makes
it easier for formal to synthesize and reduces the number of constraints needed for each field in the packet. For
this paper, we implement the CAN bus protocol as shown in Figure 3.

Figure 3: CAN bus protocol [2].

Examining the CAN frame, the largest field is the data field, which can be up to 8 bytes, and the CRC is the second
largest field at 16 bits. Therefore, we could arbitrarily break the packet into either 8 bits or 16 bits chunks. The size
of the chunk will determine the number of properties and potentially the speed of the formal analysis. For this
example, we use 8 bits as our chunk size, and we use a standard CAN frame and not the extended frame format.
(However, we do include bit stuffing, but bit stuffing is addressed when we transmit the data in another step).

The next step is to define an 8 bit structure for each part of the packet. For parts that are greater than 8 bits, we
will define multiple structures to represent the field. Of course, some parts of the structure may have extra bits if a
field is not a multiple of 8, but anything extra will simply become unused bits3. Here is one possible way to define
structs for the CAN packet (note, since the data is transmitted from MSB to LSB, any unused bits will be included at
the bottom of the structure):

3 The smaller the packet is sliced, the less bits go unused, but at the cost of more structures and coding. The

state space is unaffected by the extra bits because they are not used and pose no performance issue for the formal
tool.

Copyright © 2023 Doulos (All Rights Reserved) Page 4 of 16

39 // --------------------------------
40 // (2) Define the packet structure
41 // --------------------------------
42 // ------------------
43 // Start of frame
44 // ------------------
45 typedef struct packed {
46 bit sof;
47 bit [6:0] unused;
48 } start_of_frame_t;
49
50
51 // ------------------
52 // Arbitration
53 // ------------------
54 typedef struct packed {
55 bit [10:3] id;
56 } arbitration_high_t;
57
58 typedef struct packed {
59 bit [2:0] id;
60 bit rtr;
61 bit [3:0] unused;
62 } arbitration_low_t;
63
64 // ------------------
65 // Control
66 // ------------------
67 typedef struct packed {
68 bit ide;
69 bit r0;
70 bit [3:0] dlc;
71 bit [1:0] unused;
72 } control_t;
73
74 // ------------------
75 // Data
76 // ------------------
77 typedef struct packed {
78 bit [7:0] value;
79 } data_t;
80

81 // ------------------
82 // CRC
83 // ------------------
84 typedef struct packed {
85 bit [14: 7] crc;
86 } crc_high_t;
87
88 typedef struct packed {
89 bit [6:0] crc;
90 bit unused;
91 } crc_low_t;
92
93 // Break out the CRC delimiter
94 // so no bit stuffing occurs
95 // during the delimiter
96 typedef struct packed {
97 bit crc_delimiter;
98 bit [6:0] unused;
99 } crc_delimiter_t;
100
101
102 // ------------------
103 // Acknowledge
104 // ------------------
105 typedef struct packed {
106 bit ack;
107 bit ack_delimiter;
108 bit [5:0] unused;
109 } ack_t;
110
111 // ------------------
112 // End of frame
113 // ------------------
114 typedef struct packed {
115 bit [6:0] eof;
116 bit unused;
117 } end_of_frame_t;
118
119 typedef struct packed {
120 bit [2:0] ifs;
121 bit [4:0] unused;
122 } inter_frame_spacing_t;

With the packet structures defined, we can define a packed union to represent any part of the packet or frame.
We include a member called qbits to explicitly access the packed union as a flatten queue of bits:

123 // Combined packet type

124 typedef union packed {

125 start_of_frame_t sof;

126 arbitration_high_t arb_h;

127 arbitration_low_t arb_l;

128 control_t ctrl;

129 data_t data;

130 crc_high_t crc_h;

131 crc_low_t crc_l;

132 crc_delimiter_t crc_delimiter;

133 ack_t ack;

134 end_of_frame_t eof;

135 inter_frame_spacing_t ifs;

136 bit [7:0] qbits;

137 } pkt_item_t;

Copyright © 2023 Doulos (All Rights Reserved) Page 5 of 16

With our packet items defined, we now create an array that contains our CAN bus frame. Since we have 11
structures and the data can be up to 8 bytes in a frame, we set the size of the array to be at least 18 plus an extra
array element for terminating the frame:

138 // Packet items
139 localparam NUM_ITEMS = 1 + // SOF
140 1 + // ARB_H
141 1 + // ARB_L
142 1 + // CTRL
143 8 + // DATA
144 1 + // CRC_H
145 1 + // CRC_L
146 1 + // CRC_DELIMITER
147 1 + // ACK
148 1 + // EOF
149 1 + // IFS
150 1; // NONE
151
152 pkt_item_t packet [NUM_ITEMS+1];

When we define the packet array, we allocate one more location so our formal properties will synthesize and work
correctly, which is explained in the last step.

Associated with each chunk in the frame is another structure to keep track of its field kind or type, length, and a
running tally of the overall length (as the number of bits or bytes depending on the protocol) of the frame. While
this information can be embedded in each packet structure above, by separating out this information, we keep the
size of the packet structure smaller for the formal tool and ensure that it does not affect the packet’s state space.
For example, the following code defines this additional structure:

153 // -----------------
154 // Packet Structure
155 // -----------------
156 typedef enum bit [3:0] { SOF, ARB_H, ARB_L, CTRL, DATA, CRC_H, CRC_L,
157 CRC_DELIMITER, ACK, EOF, IFS, NONE } pkt_item_kind_t;
158
159 typedef struct packed {
160 pkt_item_kind_t kind;
161 bit [7:0] length;
162 bit [7:0] total_length;
163 } packet_info_t;
164
165 packet_info_t packet_info [NUM_ITEMS+1];

Once again, the purpose of this step is to break the packet-based protocol into smaller, manageable chunks, which
reduces the state space for formal and simplifies its formal synthesis. Conceptually, the arrays are illustrated in
Figure 4, showing how the structures map back to the packet diagram. The length field represents the number of
bits used in that element, and the total_length is the length of the entire packet/frame from that array element
onwards.

Copyright © 2023 Doulos (All Rights Reserved) Page 6 of 16

Figure 4: Example mapping of a CAN frame to the packet and the packet_info arrays.

C. Define the packet constraints

With the packet structures defined, we constrain our packet arrays to represent a valid, basic CAN frame. First,
some helper constraints are added to keep track of each frame item, and tally up the total packet size:

166 // ---
167 // (3) Define packet constraints
168 // ---
169 sequence seq_kind(n, k);
170 packet_info[n].kind == k;
171 endsequence
172
173 sequence seq_total_length(n);
174 packet_info[n].total_length == packet_info[n+1].total_length +
175 packet_info[n].length;
176 endsequence
177
178 sequence seq_length(n, l);
179 (packet_info[n].length == l) and seq_total_length(n);
180 endsequence
181
182 sequence seq_terminate_length(n);
183 (packet_info[n].length == 0) &&
184 (packet_info[n].total_length == 0);
185 endsequence

The n passed into the named sequences represents the element in the packet arrays shown above. With the
seq_total_length sequence, the total length is calculated using the current element’s length and the next
element’s length (n+1). The seq_length sequence sets the length and then calls the seq_total_length. This
technique of reaching into the previous or next element in the frame is one way to pass information about the
entire packet to the header fields (like the total packet/frame length) or for error checking functions (like
checksum or CRC).

Now a property constraint needs written for each element in the packet to specify its legal values. Each property is
passed an index into the packet array (n), and the packet element’s kind, length, and legal values for its structure’s
members are described within the named property:

Copyright © 2023 Doulos (All Rights Reserved) Page 7 of 16

186 //
187 // Start of frame
188 //
189 property prop_sof(n);
190 seq_kind(n,SOF) and
191 seq_length(n,1) and
192 (packet[n].sof.sof == '0) and
193 (packet[n].sof.unused == '0);
194 endproperty
195
196 //
197 // Arbitration
198 //
199 enum bit { DATA_FRAME = 0,
200 REMOTE_FRAME = 1
201 } frame_type;
202 bit [10:0] id;
203
204 property prop_arb_h(n);
205 seq_kind(n,ARB_H) and
206 seq_length(n,8) and
207 (packet[n].arb_h.id == id[10:3]);
208 endproperty
209
210 property prop_arb_l(n);
211 seq_kind(n,ARB_L) and
212 seq_length(n,4) and
213 (packet[n].arb_l.id == id[2:0])
214 and
215 (packet[n].arb_l.rtr == frame_type)
216 and
217 (packet[n].arb_h.unused == '0);
218 endproperty
219
220 //
221 // Control
222 //
223 bit [3:0] payload_size;
224 property prop_control(n);
225 seq_kind(n,CTRL) and
226 seq_length(n,6) and
227 (packet[n].ctrl.ide == 0) and
228 (packet[n].ctrl.r0 == 0) and
229 (packet[n].ctrl.dlc == payload_size)
230 and
231 (packet[n].ctrl.unused == '0);
232 endproperty
233
234 //
235 // Data payload
236 //
237 bit [7:0] random_data;
238
239 property prop_data(n);
240 seq_kind(n,DATA) and
241 seq_length(n,8) and
242 (packet[n].data.value == random_data);
243 endproperty
244

245 //
246 // CRC
247 //
248 bit [15:0] crc;
249
250 property prop_crc_h(n);
251 seq_kind(n,CRC_H) and
252 seq_length(n,8) and
253 (packet[n].crc_h.crc == crc[14:7]);
254 endproperty
255
256 property prop_crc_l(n);
257 seq_kind(n,CRC_L) and
258 seq_length(n,7) and
259 (packet[n].crc_l.crc == crc[6:0]);
260 endproperty
261
262 property prop_crc_delimiter(n);
263 seq_kind(n,CRC_DELIMITER) and
264 seq_length(n,1) and
265 packet[n].crc_delimiter.crc_delimiter

== 1);

266 endproperty
267
268 //
269 // ACK
270 //
271 property prop_ack(n);
272 seq_kind(n,ACK) and
273 seq_length(n,2) and
274 (packet[n].ack.ack == tx_rx) and
275 (packet[n].ack.ack_delimiter == '1);
276 endproperty
277
278 //
279 // End of frame
280 //
281 property prop_eof(n);
282 seq_kind(n,EOF) and
283 seq_length(n,7) and
284 (packet[n].eof.eof == '1);
285 endproperty
286
287 //
288 // Inter-frame spacing
289 //
290 property prop_ifs(n);
291 seq_kind(n,IFS) and
292 seq_length(n,3) and
293 (packet[n].ifs.ifs == '1);
294 endproperty
295
296 //
297 // Terminal for packet
298 //
299 property prop_none(n);
300 seq_kind(n,NONE) and
301 seq_terminate_length(n);
302 endproperty

Copyright © 2023 Doulos (All Rights Reserved) Page 8 of 16

To better understand these properties, consider the start-of-frame:

189 property prop_sof(n);

190 seq_kind(n,SOF) and

191 seq_length(n,1) and

192 (packet[n].sof.sof == '0) and

193 (packet[n].sof.unused == '0);

194 endproperty

On line 190, seq_kind is called with the array index and the kind as defined by the pkt_item_kind_t
enumeration (line 157). This sets packet_info[n].kind element to the start-of-frame or SOF, and seq_length
sets packet_info[n].length to 1, adds 1 to the total frame bit count, and assigns it to
packet_info[n].total_length. These two sequences are included in all the properties, and then any
individual field constraints required by the bus protocol are included. For example, the sof field is set to 0 per the
CAN bus protocol. For purposes of the CRC calculation, the unused bits are also constrained to 0 since zeros are
passed over in the CRC calculation.

Notice that the packet’s payload, which can be up to 8 bytes in a basic CAN bus frame, is specified using only one
named property, prop_data. This property will be applied multiple times for each byte in the payload. Since we
wish to transfer just random data, we are using an unconstrained formal control point, random_data, and
assigning it for our data payload. For calculating the CRC, we define a local variable called crc, which will be
assigned the calculated CRC value for the CAN frame. The CRC calculation is performed using a function, which is
shown in the last step. By themselves, these named properties do nothing, but in the next step, we apply these
properties to each element of the packet array so formal knows how to generate the valid CAN frame.

D. Apply the packet constraints

The next step is to apply the property constraints defined above. This is where the actual packet or frame is
defined. When we verify our design, we want to check that both the valid and invalid packets are handled
correctly; however, it is easier to define the valid packets since they are generally fully specified. For now, our
focus will be on defining valid packets, but later we will show how to generate illegal packets.

The key to creating a packet or frame is defining a top level property with conditional statements4. Here is what
our CAN frame property looks like:

303 // ---
304 // (4) Apply packet constraints
305 // ---
306 property prop_pkt(n);
307 if (packet_info[n].kind == SOF) prop_arb_h(n+1)

308 else if (packet_info[n].kind == ARB_H) prop_arb_l(n+1)
309 else if (packet_info[n].kind == ARB_L) prop_control(n+1)
310 else if ((payload_size == 0) && (packet_info[n].kind == CTRL)) prop_crc_h(n+1)
311 else if ((payload_size > 0) && (packet_info[n].kind == CTRL)) prop_data(n+1)
312 else if (((payload_size+3) > n) && (packet_info[n].kind == DATA)) prop_data(n+1)
313 else if (((payload_size+3) <= n) && (packet_info[n].kind == DATA)) prop_crc_h(n+1)
314 else if (packet_info[n].kind == CRC_H) prop_crc_l(n+1)
315 else if (packet_info[n].kind == CRC_L) prop_crc_delimiter(n+1)
316 else if (packet_info[n].kind == CRC_DELIMITER) prop_ack(n+1)
317 else if (packet_info[n].kind == ACK) prop_eof(n+1)
318 else if (packet_info[n].kind == EOF) prop_ifs(n+1)
319 else prop_none(n+1);
320 endproperty

4 SVA allows a case statement within a property, but not all formal tools currently support it.

Copyright © 2023 Doulos (All Rights Reserved) Page 9 of 16

The first element in the packet_info array needs set and then all the other constraints fall into place. The code
for that is shown in a later step, but Figure 5 illustrates how the prop_pkt property is applied to the
packet_info array, and how the n+1 index actually sets the element type for the next element in the array. The
prop_pkt property is applied to all packet elements, but this is shown in the final step.

Figure 5: How the prop_pkt property sets each element in the packet_info array.

E. Model the packet driving logic

Sending the packet is easily accomplished with some synthesizable SystemVerilog helper code. The helper code
also handles the bit stuffing used by the CAN bus protocol. Bit stuffing is used to maintain synchronization by
inserting a bit of the opposite polarity every time 5 consecutive bits of the same polarity are transmitted. It is
slightly more complicated because bit stuffing is not used while transmitting the fixed length part of the frame
from the CRC delimiter to the inter-frame spacing [2]. Plus, the bit stuffing is not used in the calculation of the CRC.

The CAN bus sends one bit of data at a time. Stepping through the CAN frame is accomplished using two
pointers—one that specifies the unpacked dimensions of the packet array and one that steps through the packed
dimensions of each array element. The unpacked dimension pointer is p in the following code, and n represents
the packed dimensions pointer. Instead of driving directly onto the tx output port, an intermediate signal tx_out
is used, and then assigned to the tx output using a formal constraint in the next step. The reason for this is to
simplify the helper code modeling and give the flexibility of controlling the output easily with additional formal
constraints. A transmitted bit counter, tx_bits, is maintained for determining the end-of-frame as shown above
on line 17 of the example code. For completeness, the bit stuffing code is included, but it is slightly greyed out to
focus on the packet driving logic.

321 // ---
322 // (5) Model the packet driving logic
323 // ---
324 bit tx_out; // Data to drive to the output
325 bit [3:0] p;
326 bit [2:0] n;
327 bit prev_tx; // Extra bit stuffing logic in grey

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

SOF
ARB_H

ARB_L

CTRL

DATA

packet_info

CRC_H

CRC_L

CRC_DELIMITER
1

13
ACK

2
12

EOF

IFS

n

if (packet_info[0].kind == SOF) prop_arb_h(0+1)

assume property (pkt_sof |-> prop_sof(0));

else if (packet_info[1].kind == ARB_H) prop_arb_l(1+1)

else if (packet_info[2].kind == ARB_L) prop_control(2+1)

else if ((payload_size > 0) && (packet_info[3].kind == CTRL)) prop_data(3+1)

else if (((payload_size+3) <= 4) && (packet_info[4].kind == DATA)) prop_crc_h(4+1)

else if (packet_info[5].kind == CRC_H) prop_crc_l(5+1)

else if (packet_info[6].kind == CRC_L) prop_crc_delimiter(6+1)

else if (packet_info[7].kind == CRC_DELIMITER) prop_ack(7+1)
else if (packet_info[8].kind == ACK) prop_eof(8+1)

else if (packet_info[9].kind == EOF) prop_ifs(9+1)

else prop_none(10+1)

NONE[11]

property prop_pkt(n);

endproperty

Copyright © 2023 Doulos (All Rights Reserved) Page 10 of 16

328 bit [2:0] same;
329
330 always @(posedge clk or posedge rst)
331 begin
332 if (rst) begin
333 tx_out <= '0;
334 p <= '0;
335 n <= $bits(pkt_item_t) - 1'b1;
336 tx_bits <= '0;
337 prev_tx <= '0;

338 same <= '0;

339 end
340 else begin
341

342 // -------------------
343 // Transfer the data
344 // -------------------
345 if (pkt_vld) begin

346
347 //
348 // Insert bit stuffing
349 //
350 if ((packet_info[p].kind inside { [SOF:CRC_L] }) && (same == 5)) begin
351
352 tx_out <= ~prev_tx;
353 same <= '0;
354 prev_tx <= ~prev_tx;
355
356 end
357 else begin
358
359 // Drive the packet data
360 tx_out <= packet[p].qbits[n];
361
362 // Keep track of how many bits sent
363 tx_bits <= tx_bits + 1'b1;
364
365 // Update pointers
366 if (($bits(pkt_item_t) - n) == packet_info[p].length) begin
367 if (packet_info[p].kind == NONE)
368 p <= '0; // Wrap back to beginning

369 else
370 p <= p + 1'b1; // Next packet item

371

372 n <= $bits(pkt_item_t) - 1'b1; // Start with the top bit
373 end
374 else begin
375
376 // Next bit in the packet item
377 n <= n - 1'b1;
378 end
379
380 // Bit stuffing tracking
381 if (packet[p].qbits[n] == prev_tx) begin
382 same <= same + 1'b1;
383 end
384 else begin
385 same <= '0;
386 prev_tx <= packet[p].qbits[n];
387 end
388 end
389 end
390 else begin

Copyright © 2023 Doulos (All Rights Reserved) Page 11 of 16

391
392 // Clear when not valid
393 p <= '0;
394 n <= $bits(pkt_item_t) - 1'b1;
395 prev_tx <= '0;
396 same <= '0;
397 end

398 end
399 end

The packet driving logic is highlighted on line 360. The pointers p and n are incremented through the packet, and
unused bits are skipped over by looking at the length of each array element as defined in the packet_info array
(line 366). Formal synthesizes this code into the logic shown in Figure 6.

Figure 6: Diagram of the modeling code used to drive the packet data.

For the bit stuffing logic in grey, the data transmitted is saved in prev_tx and a counter called same keeps track of
the number of consecutive occurrences of the same polarity. When the counter reaches 5, data of the opposite
polarity is driven onto the output except during the fixed length parts at the end of the frame.

F. Generate the packet
With everything in place, the last and final step is to add the formal constraints to create the packet of data. First,
the packet needs to be initialized:

400 // ---
401 // (6) Generate the packet
402 // ---
403
404 // Initialize the packet
405 asm_pkt_init_start : assume property (pkt_sof |-> prop_sof(0));
406 asm_pkt_init_last : assume property (prop_none(NUM_ITEMS));

Constraint asm_pkt_init_start assigns the first element in the packet to be a start-of-frame. The last element
in the packet array is assigned to be of type NONE, meaning that it is an unused element. The reason for including
the extra element at the end of the packet array (NUM_ITEMS+1) is because the packet constraints use n+1. Since
the properties need to be synthesizable, the extra element is added so that no index out-of-bounds error is
generated when referencing packet[n+1] or packet_info[n+1]. In the above code, prop_none(NUM_ITEMS)
initializes that last element to NONE since it is not used, but is there to prevent the index out-of-bounds error.

Copyright © 2023 Doulos (All Rights Reserved) Page 12 of 16

Next, each element in the packet is constrained using the prop_pkt property discussed previously:

407 // Create the packet/frame
408 for (genvar i = 0; i < NUM_ITEMS-1; i++)
409 begin : pkt_init
410 asm_init_pkt : assume property (pkt_sof |-> prop_pkt(i));
411 end
412
413 asm_set_total_frame_length :
414 assume property (total_bits == packet_info[0].total_length);
415
416 asm_payload_size : assume property (payload_size inside { [0:8] });
417 asm_payload_size_stable: assume property (pkt_vld |-> $stable(payload_size));

The generate block handles the packet initialization by assigning the prop_pkt property constraint to each
element. Recall, the total_length bit count represents the total number of bits in the frame from that position
onwards. Therefore, the total length can be found in element 0 of the packet_info array as shown on line 417.
The total_bits variable is set with this assumption and then used to control the end-of-frame signal when the
number of transmitted bits (tx_bits) reaches total_bits. In order to constrain the payload size (i.e., number of
data elements), the payload is constrained on line 416.

While the asm_init_pkt constraint initializes most of the frame, the CRC still needs to be calculated. A
synthesizable function is defined which uses only parts of the frame needed for the CRC calculation. While the
specific implementation is not important, it is included here for reference as an example for calculating CRC or
checksum:

418 // ---
419 // CRC functions
420 // The following is taken from http://blog.qartis.com/can-bus
421 // ---
422 function bit [15:0] can_crc_next(bit [15:0] crc, bit [7:0] data);
423 crc ^= 16'(data) << 7;
424
425 for (int i = 0; i < 8; i++) begin
426 crc <<= 1;
427 if (crc & 16'h8000) begin
428 crc ^= 16'hc599;
429 end
430 end
431 return (crc & 16'h7fff);
432 endfunction : can_crc_next
433
434 function bit [15:0] calc_crc();
435 calc_crc = '0;
436
437 calc_crc = can_crc_next(calc_crc, { '0, packet[1].qbits[7:6] });
438 calc_crc = can_crc_next(calc_crc, { packet[1].qbits[5:4],
439 packet[2].qbits[7:2] });
440 calc_crc = can_crc_next(calc_crc, { packet[2].qbits[1:0],
441 packet[3].qbits[5:0] });
442
443 for (int i = 4; i < 12; i++) begin
444 if ((payload_size + 4) > i) begin
445 calc_crc = can_crc_next(calc_crc, packet[i].qbits);
446 end
447 end
448 endfunction : calc_crc
449

Copyright © 2023 Doulos (All Rights Reserved) Page 13 of 16

Recall on line 248, a variable named crc was defined and used within the named properties prop_crc_h and
prop_crc_l. This variable can now be set using the calc_crc() function:

450 // Generate the CRC
451 asm_calc_crc: assume property (pkt_vld |-> crc == calc_crc() && $stable(crc));
452

With the CRC constrained, the frame is now complete. A formal constraint is used to assign the tx_out variable to
the tx output, and the packet needs to be held stable during the packet transfer or formal will continue to change
the packet structure each clock cycle:

453 // Drive the frame
454 asm_drive_data : assume property (pkt_vld |-> tx == tx_out);
455 asm_undriven : assume property (!pkt_vld |-> tx == 1'b1);
456 asm_pkt_stable : assume property (pkt_vld |-> $stable(packet));
457 asm_pkt_info_stable: assume property (pkt_vld |-> $stable(packet_info));
458

The asm_drive_data constraint performs the actual driving of the data to the output. The CAN bus protocol
specifies a value of 1 when not driving so asm_undriven provides that functionality.

The last and final step is to write the actual formal assertion or cover properties to perform the formal verification.
If driving into a packet parser, the design would typically include a status signal to indicate whether a packet has
been successfully received and parsed. In that case, a typical assertion would be to assert that the status signal
never indicates an error since we have defined only valid, legal packets. For this CAN bus example, we define a
cover property to generate a waveform of the frame:

459 // Generate waveform of frame
460 cov_gen_packet: cover property (prop_transfer);

The cover property waveform is shown in Figure 7. The packet_info shows how the formal constraints have built
the packet, specifically the type or kind of each element, which is used for constraining the packet elements. The
union member qbits is used to drive the value onto the tx output, which is highlighted in blue in the waveform.

One modification to consider is the ability of specifying bad packets or frames for testing the design’s handling of
bad input. We start by defining a flag that specifies if the packet is valid (good) or invalid (bad):

461 // Used by formal tool to select good or bad packets
462 enum bit { FALSE = 0, TRUE = 1 } pkt_good;

Next, we modify the properties we already defined. We create a new property that will set the kind, length, and
call our previous properties. For example:

Copyright © 2023 Doulos (All Rights Reserved) Page 14 of 16

Figure 7: Example CAN frame generated by formal using a cover property.

189 property prop_sof(n);
190 seq_kind(n,SOF) and
191 seq_length(n,1) and
192 (packet[n].sof.sof == '0) and
193 (packet[n].sof.unused == '0);
194 endproperty

Is changed to:

189 property prop_sof(n);
190 (packet[n].sof.sof == '0) and
191 (packet[n].sof.unused == '0);
192 endproperty
193
194 // Add new property
195 property prop_pkt_sof(n);
195 seq_kind(n,SOF) and
196 seq_length(n,1) and
197 if (pkt_good) prop_sof(n)
198 else not(prop_sof(n));
199 endproperty

Copyright © 2023 Doulos (All Rights Reserved) Page 15 of 16

The pkt_good flag tells formal to use the valid packet constraints or set it to the opposite. Once we modify each
constraint, we modify the pkt_prop constraint to call the new properties instead (e.g., prop_pkt_sof shown
above). Then to generate a good or bad packet, we just include the prop_good flag in the assertions or cover
property:

463 cov_gen_good_packet : cover property (pkt_good and prop_transfer);
464 cov_gen_bad__packet : cover property (not(pkt_good) and prop_transfer);

The not(pkt_good) causes formal to set pkt_good == FALSE, which in turn affects the conditional statements
in the packet properties.

III. RESULTS

Performance between formal tools varies using this approach. Compilation is typically very quick (usually seconds)
provided the packet structures are sliced small enough to be efficient for formal. The author has personally used
this approach for verifying Ethernet jumbo frames (9000 bytes) on a real-world Ethernet parser. Generating a
packet waveform as in Figure 7 takes a bit more time. In this example of a CAN bus frame, results vary between the
major EDA vendors between 20 seconds to 1 minute. However, for the larger Ethernet example, generation times
were typically between 3 to 6 minutes.

Developing the constraints and modeling code discussed in this paper is typically much less time than developing a
UVM environment. For example, this CAN bus example was developed over a couple days, including learning the
bus protocol. With this approach, no test cases were needed nor did any corner case need specified. All that is
needed is the requirements for the design and the appropriate assertions and cover properties specifying whether
to use a good or bad packet. Formal will do the rest and thoroughly test your design without the weeks or months
of developing a simulation testbench. The added advantage is that the formal constraints used to specify the
packet or frame can also be used with simulation and complement other verification environments. Assumptions
specified for formal become assertions in simulations so they can be used as extra checks in simulation to verify
that the stimulus was generated correctly.

Indeed, the formal constraints are perhaps the easiest part to this approach. Developing the appropriate modeling
code is typically much more time-consuming. In this example, adding in the bit stuffing and the CRC calculation
proved to be the more difficult and time-consuming component than developing the constraints. While not all data
path problems are solvable using formal, this approach demonstrates that with a little ingenuity and
understanding how a formal tool synthesizes and solves problems, even complicated packet-based protocols are
within the possibility of formal verification.

REFERENCES

[1] Wikipedia, "IPv4," [Online]. Available: https://en.wikipedia.org/wiki/IPv4. [Accessed 26 07 2022].

[2] Wikipedia, "CAN bus," [Online]. Available: https://en.wikipedia.org/wiki/CAN_bus. [Accessed 28 July 2022].

ABOUT DOULOS

For over 30 years Doulos has been dedicated to developing the skills, capability and productivity of engineers
designing the latest technologies. The essential choice for independent training to over 5,000 companies spanning
more than 75 countries, Doulos provides scheduled classes and bespoke team training both In-Person and Live
Online. The course portfolio includes hardware design and verification languages and methodologies, embedded
software, AI and deep learning.

Copyright © 2023 Doulos (All Rights Reserved) Page 16 of 16

About the Author

Doug Smith is a verification engineer and instructor for Doulos with expertise in UVM and
formal technologies. He has been using formal technology for several decades, performing
formal verification on many kinds of designs and formal applications. Likewise, he has provided
formal consulting and application support at both Siemens EDA and Jasper DA. At Doulos, he
delivers training in formal technology, hardware description languages, and verification
methodologies.

