Essential DSP Implementation Techniques for Xilinx FPGAs
Course Description
This course provides a foundation for digital signal processing (DSP) techniques for Xilinx devices
The emphasis is on:
Reviewing basic binary number theory, mathematics, and the essential features within the FPGA that are important to signal processing
Exploring a variety of filter techniques with a focus on optimal implementation in Xilinx devices and continues with an examination of FFTs, video, and image processing
Introducing Xilinx cores and IP that are relevant to signal processing.
Training Duration
2 days
Who Should Attend?
Engineers and designers who have an interest in developing products that use digital signal processing
Prerequisites
A fundamental understanding of digital signal processing theory, including an understanding of the following principles:
Sample rates
Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters
Oscillators and mixers
Fast Fourier Transform (FFT) algorithm
Software Tools
None
Hardware
Architecture: 7 series FPGAs*
Demo board: None
*This course focuses on the 7 series FPGA architectures. Check with Doulos for specifics or other customizations.
Skills Gained
After completing this training, you will know how to:
Describe the advantages of using FPGAs over traditional processors for DSP designs
Utilize fixed point binary arithmetic and identify how to use this knowledge to create efficient designs in FPGAs
Recognize how both the CLB slices in FPGAs and the more advanced DSP48s are used to implement DSP algorithms
Explain the dataflow through the device and how to use distributed memory, block RAM, registers and SRLs to properly implement these designs
Construct different FIR filter and FFT implementations and how to optimize these implementations in the FPGA
Explain the algorithms for video and imaging systems and their implementations in FPGAs
Course Outline
Day 1
Back to Basics
Architecture
FPGA Math
Lab 1: Signed Number Conversion, Quantization and Rounding, Adders, Subtractors and Accumulation
Shift Registers, RAM and Applications
Lab 2: SRL32E and RAM Estimation and Concatenation
FIR Filter
Lab 3: Filter Implementation, Resource and Performance Estimation
Day 2
Advanced Filter Techniques
Lab 4: Filter Implementations, Resource and Performance Estimation
Fast Fourier Transform
Lab 5: FFT Implementation, Resource and Performance Estimation
Video and Imaging
Where Do We Go From Here?
Demonstration: System Generator and the CORE Generator Tool with a DSP-Targeted Reference Design
Where Can I Learn More?
Lab Descriptions
Lab 1: Signed Number Conversion, Quantization and Rounding, Adders, Subtractors and Accumulation – Learn how to estimate device resource utilization for basic math functions. Compare different methodologies for implementing functions.
Lab 2: SRL32E and RAM Estimation and Concatenation – Learn how to optimize memory and storage in Xilinx FPGAs.
Lab 3: Filter Implementation, Resource and Performance Estimation – Learn how and when to use various implementation strategies for optimal filter implementation.
Lab 4: Filter Implementations, Resource and Performance Estimation – Advanced filter topologies are studied. Architect multichannel and multirate filters using various methods. Implementation strategies will be discussed and optimal methods used.
Lab 5: FFT Implementation, Resource and Performance Estimation – Select correct parameters for FFT implementations to meet design targets. Resource estimation will be studied and trade-offs with performance examined through implementation examples.
Demonstration: System Generator and the CORE Generator Tool with a DSP-Targeted Reference Design – Introduces DSP-targeted hardware boards and software tools. Witness the power, ease of use and design efficiency of Xilinx DSP tools and IP. Reinforce the concepts studied in the course material and exercises.
Looking for team-based training, or other locations?
Complete an enquiry form and a Doulos representative will get back to you.