Global training solutions for engineers creating the world's electronics products

DSP Design Using System Generator

Training duration: 2 days

Course Description

This course allows you to explore the System Generator tool and to gain the expertise you need to develop advanced, low-cost Digital Signal Processing designs. This intermediate course in implementing DSP functions focuses on learning how to use System Generator for DSP, design implementation tools and hardware co-simulation verification. Through hands-on exercises, you will implement a design from algorithm concept to hardware verification by using Xilinx FPGA capabilities.
Who Should Attend?
System engineers, system designers, logic designers and experienced hardware engineers interested in DSP design training who are implementing DSP algorithms using the MathWorks MATLAB® and Simulink® software and want to use Xilinx System Generator for DSP design
Prerequisites
  • Experience with the MATLAB and Simulink software
  • Basic understanding of sampling theory
Software Tools
  • Vivado® Design Suite System Edition 2019.2
  • Model Composer
  • MATLAB with Simulink software R2018a, R2018b, R2019a, R2019b
Hardware
  • Architecture: 7 series and UltraScale™  FPGAs*
  • Demo board: Kintex™-7 FPGA KC705 board or Kintex UltraScale™ FPGA KCU105 board and Zynq® UltraScale+™ MPSoC ZCU104 board*
*Check with your local Authorized Training Provider for the specifics of the in-class lab board or other customizations. The ZCU104 board is required for the "AXI4-Lite Interface Synthesis" lab.
Skills Gained
After completing this comprehensive training, you will know how to:
  • Describe the System Generator design flow for implementing DSP functions
  • Identify Xilinx FPGA capabilities and implement a design from algorithm concept to hardware simulation
  • List various low-level and high-level functional blocks available in System Generator
  • Run hardware co-simulation
  • Identify the high-level blocks available for FIR and FFT designs
  • Implement multi-rate systems in System Generator
  • Integrate System Generator models into the Vivado IDE
  • Design a processor-controllable interface using System Generator for DSP
  • Generate IPs from C-based design sources for use in the System Generator environment
Course Outline

Day 1

  • Introduction to System Generator
  • Simulink Software Basics
  • Lab 1: Using the Simulink Software
  • Basic Xilinx Design Capture
  • Demo: System Generator Gateway Blocks
  • Lab 2: Getting Started with Xilinx System Generator
  • Signal Routing
  • Lab 3: Signal Routing
  • Implementing System Control
  • Lab 4: Implementing System Control

 

Day 2

  • Multi-Rate Systems
  • Lab 5: Designing a MAC-based FIR
  • Filter Design
  • Lab 6: Designing a FIR Filter Using the FIR Compiler Block
  • System Generator, Vivado Design Suite, and Vivado HLS Integration
  • Lab 7: System Generator and Vivado IDE Integration
  • DSP Platforms
  • Lab 8: System Generator and Vivado HLS Tool Integration
  • Lab 9: AXI4-Lite Interface Synthesis
  • Introduction to Model Composer
  • Demo: Introduction to Model Composer
  • [OPTIONAL]: Importing C/C++ Code to Model Composer
  • [OPTIONAL]: Automatic Code Generation Using Model Composer
  • [OPTIONAL]: Lab 10: Model Composer and Vivado IDE Integration
Lab Descriptions
  • Lab 1: Using the Simulink Software – Learn how to use the toolbox blocks in the Simulink software and design a system. Understand the effect sampling rate.
  • Lab 2: Getting Started with Xilinx System Generator – Illustrates a DSP48-based design. Perform hardware co-simulation verification targeting a Xilinx evaluation board.
  • Lab 3: Signal Routing – Design padding and unpadding logic by using signal routing blocks.
  • Lab 4: Implementing System Control – Design an address generator circuit by using blocks and Mcode.
  • Lab 5: Designing a MAC-Based FIR – Using a bottom-up approach, design a MAC-based bandpass FIR filter and verify through hardware co-simulation by using a Xilinx evaluation board.
  • Lab 6: Designing a FIR Filter Using the FIR Compiler Block – Design a bandpass FIR filter by using the FIR Compiler block to demonstrate increased productivity. Verify the design through hardware co-simulation by using a Xilinx evaluation board.
  • Lab 7: System Generator and Vivado IDE Integration – Embed System Generator models into the Vivado IDE. 
  • Lab 8: System Generator and Vivado HLS Tool Integration – Generate IP from a C-based design to use with System Generator.
  • Lab 9: AXI4-Lite Interface Synthesis – Package a System Generator for DSP design with an AXI4-Lite interface and integrate this packaged IP into a Zynq UltraScale+ MPSoC processor system.
  • Lab 10: Model Composer and Vivado IDE Integration - Embed a Model Composer model into the Vivado IDE.

Looking for team-based training, or other locations?

Complete an enquiry form and a Doulos representative will get back to you.

Enquiry FormPrice on request